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Osteosarcoma (OS) manifests itself as pulmonary metastasis, which is a major cause 

of death in OS patients. Novel treatments like immunotherapy hold promise for the treatment 

of OS pulmonary metastasis. However, immunosuppressive mechanisms such as binding of 

immune inhibitory receptor, PD-1 with PDL-1, which is upregulated in cancer cells, may 

cause disease relapse. 

The effect of PD-1 blockade on NK cells and macrophages has not been investigated 

till date. The aim of this study was to determine if PD-1 blockade leads to of OS lung 

metastasis regression and study the role of NK cells and/or macrophages in the anti-PD-1 

responses. We demonstrated that PDL-1 is expressed in human OS cell lines and in lung 

metastases from OS patients, implying that its importance as a potential therapeutic target in 

OS. Further, in vivo anti-murine-PD-1 administration led to a significant decrease in the 

number of OS lung metastases using a human LM7 OS mouse model. Also, there was a 

significant increase in tumor cell apoptosis and decrease in tumor cell proliferation after in 

vivo anti-PD-1 treatment. In addition, anti-PD-1 led to blockade of p-STAT3/p-Erk1/2 and 

PDL-1 signaling in OS lung tumors. 

We discovered that PD-1 was expressed on NK cells and macrophages in OS lung 

tumors. Increased infiltration of NK cells and macrophages was observed within OS lung 

metastatic tumors after anti-PD-1 treatment. Particularly, anti-PD-1 caused an increase in the 
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anti-tumor M1 macrophages and decrease in numbers of pro-inflammatory M2 macrophages 

in OS lung metastases. We further investigated the implication of NK cells and macrophages 

in the therapeutic efficacy of anti-PD-1 against OS lung metastases. NK cell depletion using 

anti-asialo-GM1 did not affect the efficacy of anti-PD-1. Hence, NK cells were not the 

crucial immune cells involved in anti-tumor responses of anti-PD-1. However, macrophage 

depletion using Clodrosome prior to anti-PD-1 treatment significantly compromised the 

regression of OS lung metastasis. Our results implied that macrophages are the crucial 

mediators of the anti-tumor responses of anti-PD-1 against OS lung metastasis. Overall, our 

data suggests that PD-1 blockade with anti-PD-1 leads to regression of OS lung metastases, 

primarily through activation of macrophages. 
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INTRODUCTION 
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Osteosarcoma 

Osteosarcoma (OS) is the most frequent primary malignancy of the bone in pediatric 

patients. Every year, 400 new OS cases are diagnosed in the United States, which has 

resulted in OS becoming the eighth most common childhood malignancy (1, 2). It usually 

occurs in children and adolescents in the age group of 10-20 years or elderly adults above 65 

years. OS primarily affects the metaphysis of the fast- growing long bones at the extremities, 

the most common sites of occurrence being proximal tibia (23%), distal femur (43%) or 

humerus (10%) (1, 3). OS arises from the mesenchymal cells of the bone and is characterized 

by the malignant cells producing aberrant osteoid or immature bone (2, 4). Diagnosis of OS 

is done using plain radiography, magnetic resonance imaging (MRI) or computed 

tomography (CT) scanning (5). There are several risk factors for the development of OS 

which include ionization radiation (cumulative high-radiation doses), chemotherapy 

(anthracycline or high-dose alkylating agents), Paget’s disease (accelerated bone turnover), 

genetic abnormalities such as retinoblastoma (Rb inactivation), Li-Fraumeni syndrome (p53 

deletions), Rothmund-Thomson syndrome (RECQL4 mutations), Bloom syndrome 

(RECQL2) and Werner syndrome (RECQL3) (5). 

Due to the hematogenous spread of the disease, the most common site of OS 

metastasis is the lung. 15-20% of the patients have detectable metastases at the time of 

diagnosis and majority of the patients (85%) present with micro-metastatic disease, thus 

making it an aggressive life-threatening cancer (6, 7). The current standard treatment of OS 

includes neoadjuvant chemotherapy and subsequent surgical excision of the primary tumor as 

well as clinically detectable metastases. Surgery is further followed by adjuvant 

chemotherapy. Currently, 80% of patients are subjected to limb salvage surgery (4). The 



www.manaraa.com

3 

current standard of care includes the combination chemotherapy of Cisplatin, 

Doxorubicin/Adriamycin and high-dose Methotrexate (MAP), with or without Ifosfamide. 

This combination treatment has dramatically improved the 5-year survival of patients with 

localized disease from 20% to 70% (4, 5). However, despite chemotherapy advances, none of 

the second-line therapy options for relapsed patients have shown any therapeutic benefit. The 

5-year survival of patients with OS pulmonary metastasis remains as low as 20-30%, without 

any significant improvement in the past twenty years (2, 4). Hence, there is a pressing need 

to improve clinical outcomes for relapsed disease patients through the discovery of novel 

therapeutic options for this lethal malignancy. Table 1 lists the current clinical trials that are 

ongoing for OS (https://clinicaltrials.gov/) 

.  

Table 1. Current clinical trials in OS  

 

(https://clinicaltrials.gov/) 
 

Target 

population 

Agent Phase Study started 

Bone metastasis 

in solid tumors, 

advanced 

pretreated OS 

Chemotherapy 

combination of Sirolimus 

with cyclophosphamide, 

methotrexate, zoledronic 

acid 

Phase 1 

(Prospective) 

February 2015 

Osteosarcoma 

metastasis 

Apatinib 

( small-molecule VEGFR 

tyrosine kinase inhibitor) 

Phase 2 

Phase 3 

March 2016 

 

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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Target patient 

population 

Agent Phase Study started 

OS Combination of neo-

adjuvant chemotherapy and 

Lithium Carbonate 

(GSK3β inhibitor) 

Phase 4 January 2013 

Metastatic/ 

recurrent OS 

Combination of 

Dinutuximab (Anti-

disialoganglioside 

monoclonal antibody and 

Sargramostim (GM-CSF) 

Phase 2 November 2015 

Lung metastasis 

in Soft Tissue 

Sarcoma and 

Bone sarcomas 

Doxorubicin (In vivo lung 

perfusion) 

Phase 1 February 2016 

GD2+ solid 

tumors (OS, 

neuroblastoma) 

Anti-GD2-CAR T 

cells (3rd generation) 

Phase 1 February 2014 

OS, CNS tumors, 

Neuroblastoma, 

Ewings Sarcoma, 

Rhabdomyosarco

ma 

Allogenic hematopoietic 

cell transplantation and 

Donor NK cell infusions 

Phase 2 March 2014 
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Target patient 

population 

Agent Phase Study started 

Solid tumors 

(non-CNS) 

including OS 

HSV1716 (mutant herpes 

simplex virus (HSV) type 

I) 

Phase 1 March 2010 

Relapsed OS Docetaxel and 

Gemcitabine combination 

versus Ifosfamide 

Phase 2 April 2016 

Relapsed OS Thiotepa (Alkylating 

agent) and stem cell rescue 

with chemotherapy 

Phase 2 July 2009 

Metastatic OS Pazopanib Phase 2 April 2013 

Recurrent, 

metastatic OS 

Denosumab (RANK ligand 

antibody) 

Phase 2 October 2015 

High grade OS Regorafenib (Multi-kinase 

inhibitor) 

Phase 2 September 2014 

Sarcomas 

including OS 

 

Combination of 

cyclophosphamide and 

MM-398 (Irinotecan 

Sucrosofate Liposome 

Injection) 

Phase 1 December 2013 

Relapsed/ 

Recurrent OS 

Combination of erlotinib 

and temozolomide 

Phase 2 August 2016 

 



www.manaraa.com

6 

Target patient 

population 

Agent Phase Study started 

Sarcomas 

including 

advanced/metast

atic OS 

Combination of 

Pembrolizumab (anti-PD-

1) and Metronomic 

Cyclophosphamide 

Phase 2 March 2015 

Sarcomas 

including 

recurrent OS 

Combination of 

Nivolumab (anti-PD-1) 

and Ipilimumab (anti-

CTLA-4) 

Phase 1/Phase 2 February 2015 

 

Immunotherapy for Osteosarcoma treatment 

Immunotherapy is one of the promising approaches to target minimal residual and 

relapsed disease. Our laboratory has previously successfully discovered novel 

immunotherapeutic strategies for treatment of OS in preclinical and clinical settings. 

L-MTP-PE  

We have shown that the immunomodulator L-MTP-PE activates the macrophages and 

monocytes to eradicate metastases in human and canine models of OS (8-10).  L-MTP-PE is 

known to induce inflammatory responses like activation of macrophages, stimulation of anti-

tumor monocytes, and cause an increase in levels of cytokines and inflammatory molecules 

(11). Recently, data from clinical trials showed that L-MTP-PE given in combination with 

standard adjuvant chemotherapy resulted in 8% improvement in the overall survival of 
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patients with OS metastatic disease (12-14). L-MTP-PE has been approved by European 

Medical Agency and in other countries for the treatment of surgically resectable non-

metastatic OS in combination with chemotherapy. L-MTP-PE has been the only novel 

therapeutic agent that has made a significant impact on the survival of OS patients. 

NK cell therapy  

Immune-based cell therapy, in particular, natural-killer (NK) cell therapy has shown 

to be cytolytic as NK cells express several activating receptors (15). NK cells are the major 

drivers of the innate immune system and have an advantage over T-cells as they kill target 

cells without prior tumor-antigen recognition or major histocompatibility complex (MHC)-

restriction (16). Adoptive NK cell immunotherapy has shown to be effective against multiple 

cancer types including acute myelogenous leukemia (AML), metastatic melanoma, renal cell 

carcinoma and Hodgkin's disease (17-19). NK cell infusions require ex vivo expansion to 

generate large numbers of NK cells to elicit the necessary clinical therapeutic effect. Several 

platforms such as membrane bound IL-21–expressing K562 antigen presenting cells (APCs) 

have been implemented to generate a high number of proliferating activated NK cells (20). It 

has been found that lower NK cell numbers correlated with poor outcomes in OS patients 

(21, 22). In vitro cytotoxicity studies with NK cells have also demonstrated activity against a 

panel of OS cells and other pediatric solid tumor cell lines (23-25). Further, it has been 

previously shown that the number and activity of NK cells positively correlated with the 

clinical outcomes in OS patients treated with Interleukin-2 (IL-2) (22). This implied the role 

of NK cells in the control of osteosarcoma. 
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Aerosol IL-2 

IL-2 is  a crucial cytokine for the NK and T-cell activation, proliferation and 

maintenance of immune responses (26, 27). Systemic high-dose IL-2 has been previously 

approved by the United States Food and Drug administration (US-FDA) for the treatment of 

metastatic renal cancer and metastatic melanoma (28, 29). However, IL-2 treatment has been 

associated with a plethora of systemic toxicities such as ‘capillary leak syndrome’ 

culminating in extravasation of fluid into the organs, pulmonary congestion, hypotension, 

pre-renal azotemia, adult respiratory distress syndrome and myocardial infarction (30). 

Hence, alternative approaches such as aerosolized route of delivery of IL-2 have been studied 

for certain conditions such as lung diseases. Aerosol IL-2 offers an advantage of producing 

the organ (lung)-specific delivery with minimal toxicity enabling the use of lower dosages. 

Aerosolized IL-2 has also demonstrated therapeutic benefit in dogs with OS lung disease (31, 

32). Previous studies have shown the modest efficacy and safety of aerosol IL-2 in renal cell 

carcinoma metastasis due to the activation of lymphocytes in the lung (33). Our laboratory 

has shown the efficacy of single agent aerosol IL-2 in a human OS pulmonary metastasis 

model (34). However, as the complete elimination of metastases was not observed and 

relapse was observed, we used a combination approach of aerosol IL-2 along with NK cells. 

Guma. S et al. discovered that aerosolized IL-2 increased the number of human NK cells in 

the lung and the combination NK and aerosol IL-2 had significant effect against OS lung 

metastases as compared to NK cell therapy alone (34). Also, the overall survival of mice was 

significantly improved by the combination therapy and provided benefit compared to the 

single agent treatments (35). 
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T-cell therapy 

Adoptive T-cell therapy involves the modulation of the adaptive immune system by 

the transfer of T cells into the patients to induce antitumor responses. It also involves ex vivo 

expansion of T cells before infusing in patients. Recently, genetically engineered T cells such 

as T‑cell receptor (TCR)‑modified T cells, chimeric antigen receptor (CAR)‑modified T 

cells have been used to help in accurately redirecting the T cells to the target antigens (36). 

Adoptive T-cell therapy demonstrated success in in early studies in melanoma, where using 

autologous polyclonal T cells expressing melan‑A (MART‑1) specific α/β TCRs were 

administered and 2 of 15 patients showed objective responses against metastatic lesions (37). 

Clinical trials using New York‑esophageal squamous cell carcinoma‑1 (NY‑ESO‑1)- 

specific TCR T cells showed objective clinical responses in 4 out of 6 synovial cell 

carcinoma patients and melanoma patients after chemotherapy (38). Similarly, Ahmed et al. 

showed that HER-2 specific CARs caused regression of OS xenografts in local and 

metastatic mouse models (39). Our lab demonstrated that IL-11Rα is highly expressed in 

patient specimens of OS lung metastasis. Hence, administration of IL-11Rα -CAR-specific T 

cells in nude mice resulted in regression of lung metastases (40). 

In summary, a number of immunotherapeutic strategies have demonstrated success in 

exhibiting an antitumor role in OS. This promotes a better understanding of immune-tumor 

cell interactions in the OS lung tumor microenvironment in order to develop better immune 

targeting agents. 
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Role of PD-1 (Programmed cell death protein 1) and PDL-1 (Programmed death 

ligand 1) pathway in Cancer 

PD-1 and PDL-1 Background 

Immune evasion has been recently accepted as one of the hallmarks of cancer. A 

dynamic interplay exists between the tumor and the host in the tumor microenvironment and 

the ability of the tumor cells to evade immune recognition (immune surveillance) determines 

disease progression (41). Immune inhibitory or ‘checkpoint’ pathways have been known to 

play a role in limiting the antitumor immune responses against cancer as well as in 

maintenance of tolerance to self-antigens. The two well-studied negative co-stimulatory 

molecules are CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) and PD-1. PD-1 is an 

immune-inhibitory receptor that was first isolated in 1992 by the Ishida group, from the 

murine T-cell hybridoma undergoing programmed cell death (42). PD-1 is primarily 

expressed on the membrane, but cytoplasmic expression has also been observed (43). PD-1 is 

expressed on immune cells such as T cells, B cells, natural killer cells, monocytes on 

activation (44). Further, PD-1 is an inducible receptor as its expression can be modulated by 

various cytokines such as IFN-γ (Interferon gamma), IL-2, IL-15 IL-21 (45). On the 

contrary, CTLA-4 is a recently discovered inhibitory receptor expressed exclusively on T 

cells and is involved in limiting memory and naive T-cell early activation (46). 

Two ligands, PDL-1 (B7-H1) and PDL-2 (programmed cell death protein 1 ligand 2) 

or B7-H2 were discovered, PDL-1 being the primary ligand responsible for PD-1 mediated 

immunosuppression (47, 48). PDL-1 is known to be expressed in a wide variety of tissues on 

both hematopoietic and non-hematopoietic origin. Specifically, PDL-1 is expressed on 
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immune cells such as T cells, macrophages, B cells and dendritic cells, endothelial cells and 

muscle cells and also on normal tissues such as placenta, heart, lung and liver (46, 49). Thus, 

PD-1-PDL-1 pathway controls the immune responses in both secondary lymphoid organs as 

well as peripheral tissues. 

 

Structure of PD-1 and PDL-2 

The length of PD-1 cDNA is 2,106 nucleotides and the protein consists of 288 amino 

acid residues. It is positioned on chromosome 2 at band q37 (50). Human PD-1 gene is a 

homologue of murine PD-1 and is known to share 70% homology at the nucleotide level and 

~60% identity at the amino acid level with the murine version (51, 52).  PD-1 is a 50-55 kDa 

type I transmembrane glycoprotein of the Ig superfamily. It contains IgV extracellular region, 

transmembrane domain and cytoplasmic tail. The cytoplasmic region is composed of 

immunoreceptortyrosine-based inhibitory motif (ITIM), and the immunoreceptor tyrosine-

based switch motif (ITSM), which are essential for the inhibitory signaling (53). 

The human PDL-1 gene is located on 9p24, the PDL-1 cDNA is 870 bp and it 

encodes a protein of 290 amino acids (50).  PDL-1 is a type I transmembrane glycoprotein 

and contains IgV-like and C-like domains, a hydrophobic transmembrane domain and a 

cytoplasmic tail of 30 amino acids (47). 
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PD-1/PDL-1 signaling and function 

The PD-1/PDL-1 pathway plays an important role in the maintenance of peripheral 

and central ‘self’ tolerance (54-56). Figure 1 A. illustrates a typical T-cell activation 

response after exposure to a foreign antigen. Peptide antigen is presented by antigen-

presenting cells (APCs) to T-cell receptor (TCR) cells through MHC proteins and then co-

stimulation occurs as CD80 and CD86 on APCs to CD28 on T cells. This results in T-cell 

proliferation and enhanced cytotoxicity exerted by T cells. In response to continuous antigen 

presentation in chronic infection or acute inflammatory responses, PD-1 is upregulated on T-

lymphocytes (CD4
+
/CD8

+
). PD-1 on T cells binds to PDL-1 on APCs or tumor cells, thus, 

blocking the CD28 mediated T-cell activation (Figure 1 B.). After the antigen is cleared, PD-

1 expression decreases accordingly. Thus, the main function of PD-1 signaling is to protect 

the host tissue damage by limiting the immune response to pathogens. PD-1 signaling also 

prohibits the auto-immune responses by promoting tolerance to self-antigens. In cancer, 

various immunosuppression mechanisms in tumor microenvironment prevent the 

development of anti-tumor immune responses. Immune evasion may occur due to 

upregulation of PDL-1 expression on the tumors, due to the release of cytokines such as IFN-

γ from T-cells (57). Immunosupressive cytokines such as transforming growth factor-b 

[TGF-b], interleukin-10 [IL-10]) or immunosuppressive enzymes (indoleamine-2,3-

dioxygenase) are produced which prevent T-cell activation. Figure 1 C. demonstrates that 

PD-1 or PDL-1 blocking antibodies can result in uncoupling of binding of PD-1 with PDL-1, 

thus resulting in activation of T-cell responses against cancer. Studies have shown that PD-1 

is expressed on exhausted T-cells and that blocking PD-1-PDL-1 pathway may result in T-

cell activation in different cancer types (58-63).  
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Figure 1. PD-1 in T-cell responses. 

A. T-cell activation occurs with the MHC bound-peptide antigen presentation to the T-cell 

receptor, followed by co-stimulation with the binding of CD80 and CD86 to CD28 on T 

cells; B. PD-1 is induced on T cells in chronic infection and persistent antigen exposure. 

PDL-1 is upregulated on APCs, which then binds to PD-1 on T cells to inhibit the CD28-

mediated T-cell activation. PDL-1 is also upregulated on cancer cells, which binds to PD-1, 

resulting in T-cell exhaustion and evasion of immune responses; C. PD-1 or PDL-1 

antibodies inhibit the binding of PDL-1 on tumor cells with PD-1, resulting in activation of 

tumor-specific T cells, T-cell proliferation and increased cytotoxicity of T cells against 

cancer cells. (Adapted from Harvey R. D. et al., Clin Pharmacol Ther, 2014). 

 

The function of PD-1 has been best characterized in T cells, although its role in other 

cell types has been studied as well. The ligation of PD-1 with PDL-1 functionally results in 

decreased immune cell proliferation, cell survival, cytolytic function and cytokine production 

and promotes apoptosis of antigen-specific T cells (64). The detailed signaling pathway is 

http://www-ncbi-nlm-nih-gov.ezproxyhost.library.tmc.edu/pubmed/?term=Immunologic+and+Clinical+Effects+of+Targeting+PD-1+in+Lung+Cancer
http://www-ncbi-nlm-nih-gov.ezproxyhost.library.tmc.edu/pubmed/?term=Immunologic+and+Clinical+Effects+of+Targeting+PD-1+in+Lung+Cancer
http://www-ncbi-nlm-nih-gov.ezproxyhost.library.tmc.edu/pubmed/?term=Immunologic+and+Clinical+Effects+of+Targeting+PD-1+in+Lung+Cancer
http://www-ncbi-nlm-nih-gov.ezproxyhost.library.tmc.edu/pubmed/?term=Immunologic+and+Clinical+Effects+of+Targeting+PD-1+in+Lung+Cancer
http://www-ncbi-nlm-nih-gov.ezproxyhost.library.tmc.edu/pubmed/?term=Immunologic+and+Clinical+Effects+of+Targeting+PD-1+in+Lung+Cancer
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illustrated in Figure 2.  At the molecular level, interaction of PD-1 with PDL-1 results in the 

recruitment of SHP-1 and SHP-2 phosphatases (Src homology 2-containing protein tyrosine 

phosphatases 1 and 2). SHP-1 and SHP-2 bind to the ITSM motif and induce de-

phosphorylation of downstream molecules as well as augmentation of PTEN expression. 

Inhibition of PI3-K (Phosphatidylinositol-4,5-bisphosphate 3-kinase) activity causes the 

blocking of PI3-K/Akt pathways, resulting in decreased T-cell survival, proliferation, protein 

synthesis, and IL-2 production (65). 
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Figure 2. The PD-1 signaling pathway. 

Ligand binding to PD-1 results in inhibition of TCR signaling through dephosphorylation of 

TCR CD3ζ chains and Zap-70, resulting in decreased Ras activation and cell proliferation. 

PD-1 signaling may also block CD28-mediated Akt activation through PI3-K inhibition. This 

occurs due to phosphorylation of ITIM and ITSM PD-1 motifs resulting in binding of SHP-

1/SHP-2. This causes inactivation of PI3-K and downstream Akt pathways, resulting in 

decreased mTOR, Bcl-xL NFκB, increased FoxO1 causing decrease in protein synthesis, T-

cell survival and cytokine release. PD-1 signaling also results in augmentation of PTEN. 

(Adapted from Chinai J. M et al., Trends Pharmacol Sci. 2015; Francisco L. M. et al,. 

Immunol Rev. 2010).   

  

https://www-ncbi-nlm-nih-gov.elibrary.mdanderson.org/pubmed/?term=Chinai+J.+M.+et+al.%2C+New%C2%A0immunotherapies+targeting%C2%A0the%C2%A0PD-1%C2%A0pathway%2C
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PDL-1 expression in cancer types 

The major ligand for PD-1, PDL-1 is overexpressed on tumor cells. PDL-1 is 

upregulated on tumor cells by two mechanisms, innate and adaptive resistance (66). Specific 

oncogenic mutations drive the PDL-1 expression in certain cancers, which is called as innate 

resistance. PTEN mutations resulting in PI3-K activation result in elevation of PDL-1 

expression in glioblastomas while anaplastic lymphoma kinase (ALK) mutations in 

lymphomas and lung cancer, have been known to drive PDL-1 expression through signal 

transducer and activator of transcription 3 (STAT3) signaling (67, 68). BRAFV600 

mutations along with STAT3 signaling caused activation of MAPK signaling in melanoma 

(69). The second mechanism of PDL-1 upregulation, adaptive immune resistance, occurring 

in the tumor microenvironment, is through physiological stimuli that normally occur to 

protect tissue from immune-mediated damage. PDL-1 can be induced on tumor cells through 

induction by IFN’s. Gajewski and colleagues showed that certain tumors possess the 

‘inflammatory gene’ signature, which involved the genes of IFN pathway. Recently, it was 

also demonstrated that a correlation exists between intra-tumoral IFN and PDL-1 expression 

and lymphocyte infiltration (70, 71). This indicated that a negative feedback loop exists, 

where IFN-γ induces PDL-1 expression, thereby suppressing the activation of PD-1
+
 T cells. 

PDL-1 is overexpressed on tumor cells in a number of different cancer types such as 

melanoma, renal, non-small cell lung cancer, head and neck, ovarian, breast, gastric cancer, 

pancreatic cancer and glioblastomas (72-76). PDL-1 expression has also been associated with 

worse prognosis and resistance to therapeutic agents in certain cancers such as renal cancer, 

pancreatic, bladder, liver, breast, stomach, lung, and ovarian cancers (72, 74, 77-79). On the 

contrary, PDL-1 may also correlate with improved survival and lymphocyte infiltration in 



www.manaraa.com

17 

some cancers (71). There has been no association of PDL-1 found with prognosis in certain 

cancers (80, 81).  

Many studies have demonstrated a correlation between PDL-1 tumor expression and 

the clinical activity of anti-PD-1/anti-PDL-1 antibodies. Topalian et al. first showed a 

positive co-relation of PDL-1 expression with objective response rates of patients as patient 

popultaion with positive PDL-1 expression (>= 5%) showed a good objective response rate 

(36%). On the other hand, patients with low  PDL-1 expression did not show any objective 

responses (82). Similarly, in KEYNOTE 001 study, tumor PDL-1 expression was associated 

with response to pembrolizumab therapy (83). A Phase I trial of anti-PDL-1 antibody 

(MPDL3280A) in various solid tumors showed that the best clinical responses were observed 

in patients, when PDL-1 was expressed by tumor-infiltrating immune cells (84). This implies 

that PDL-1 expression in the tumor microenvironment is also an important factor in 

determining clinical responses. Another Pembrolizumab study in melanoma showed that 

immune cells at the invasive front of the tumor expressing PD-1 and PDL-1 correlated with 

clinical response (85). However, a recent Phase 3 multicentric study and a study by Gettinger 

S. N. and colleagues showed that PDL-1 was not a prognostic factor and did not determine 

the therapeutic responses of Nivolumab in patients with NSCLC (non-small cell lung cancer) 

(86, 87).  Thus, PDL-1 analysis may vary according to the staining platform and protocols, 

antibody clones as well as cut-offs for positivity. Similarly, there is a variability in PDL-1 

expression due to the tumor heterogenity and differences in spatial expression (stroma versus 

tumor). Thus, determining PDL-1 expression is crucial, but it’s role as a biomarker needs to 

be carefully considered. 
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PD-1/PDL-1 targeting agents and other checkpoint inhibitors 

Checkpoint blockade for PD-1/PDL-1 pathway has been employed in two ways. 

Blockade of PD-1 with antibodies impedes the inhibitory signaling from ligation of both 

PDL-1 and PDL-2. On the other hand, PDL-1 blockade hinders the negative signaling from 

the binding of PD-1 and CD80 (B7-1) (88). Based on early clinical studies, it was observed 

that targeting PDL-1 may exert less toxicity as compared to PD-1 blockade. On the contrary, 

PD-1 blockade was found to be more effective than PDL-1 by itself, because of the 

cumulative effect of inhibiting PDL-1 and PDL-2 binding (88).  

 

Nivolumab  

Nivolumab (BMS-936558 or MDX1106b) is the most widely studied PD-1 targeted 

antibody. It is a fully monoclonal human IgG4 antibody that has been shown to lack antibody 

dependent cellular cytotoxicity. In initial Phase 1 studies, Nivolumab has been shown to 

demonstrate efficacy in a number of cancers including NSCLC, melanoma, Hodgkin's 

lymphoma, colorectal, prostate and renal cell carcinomas. Of total 294 patients, 18% 

objective responses were observed in NSCLC, 28% in melanoma and 27% in renal cell 

carcinoma. Nivolumab was administered at the doses of 0.1 mg/kg to 10 mg/kg every 2 

weeks for 8 weeks. Stable disease (greater than 24 weeks) was observed in some melanoma, 

non-small cell lung cancer and renal cell carcinoma patients. Owing to the remarkable 

regression observed, phase 3 trials were conducted and it was observed that overall survival 

benefit in metastatic melanoma patients was as compared to Ipilimumab and Dacarbazine  

(89, 90) ). Similarly, Phase II studies also showed that there was a significantly improved 

overall survival and progression-free survival in previously treated metastatic squamous cell-
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NSCLC patients as compared to Docetaxel (86). Thus, Nivolumab was approved for the 

treatment of metastatic squamous NSCLC patients after platinum-chemotherapy as well as 

for metastatic melanoma by United States Food and Drug Administration (US-FDA) (91, 

92). 

 

Pembrolizumab (MK-3475) 

Pembrolizumab is also PD-1 blocking, humanized monoclonal IgG4 kappa isotype 

antibody. It was approved by the FDA in 2014 for unresectable, metastatic melanoma after 

Ipilimumab. Phase I trial studies have demonstrated its anti-tumor activity in non-small cell 

lung cancer patients (83). Pembrolizumab has also shown better prolonged progression-free 

and overall survival and lesser toxicities as compared to Ipilimumab in advanced melanoma 

patients (89). It has also received an accelerated FDA-approval for patients with metastatic 

NSCLC, whose tumors express PDL-1 and who have had disease progression after platinum 

chemotherapy and targeted therapy (93). Other promising PD-1 targeted antibodies which are 

currently in Phase II trials include Pidilizumab (CT-011) and MEDI0680 (Table 2). 

Early clinical trial results of the SARC028 study evaluating anti-PD-1 antibody 

Pembrolizumab in advanced sarcomas revealed partial responses in 1 out of 20 OS patients 

after 8 weeks as per RECIST criteria (NCT02301039), Tawbi HA, Burgess MA, Crowley J, et 

al. Safety and efficacy of PD-1 blockade using pembrolizumab in patients with advanced soft 

tissue (STS) and bone sarcomas (BS): Results of SARC028—A multicenter phase II study. J 

Clin Oncol 34, 2016 (suppl; abstr 11006). Longer follow-up of these patients is currently 

being pursued as delayed responses may be observed in immunotherapy. The inclusion 

criteria of patients in SARC028 study involved measurable disease as defined by RECIST 

https://clinicaltrials.gov/ct2/show/NCT02301039
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1.1 criteria. Since OS is a fast-growing tumor type, this may not be the most accurate way of 

pre-selection. Particularly, the size of lesion at the initiation of treatment should be 

considered in the design of clinical trial as PD-1 targeting agents would work in 

micrometastatic disease and not in case of bulky tumors.  

PDL-1 inhibitors 

Durvalumab (MED14736) 

It is an IgG1k monoclonal antibody directed towards PDL-1. Durvalumab has shown 

promise in patients with non-small cell lung cancer. Currently, phase 3 trials of Durvalumab 

are ongoing for pretreated patients with advanced NSCLC (94). There are also trials ongoing 

for urothelial bladder cancer and squamous cell cancer of the head and neck (95). 

 

MPDL3280A 

MPDL3280A is an engineered humanized IgG1k monoclonal antibody. Phase I trials 

have depicted the efficacy of MPDL3280A in different tumor types (84). Further, Phase I 

trials in NSCLC and renal cell carcinoma have shown objective responses of 23% and 14% 

respectively. (84, 96). MPDL3280A has also shown activity against patients with advanced 

bladder cancer with objective response rates of 26% (97). Currently, the drug is in Phase II 

clinical trials for non-small cell lung cancer. 

Other PDL-1 inhibitors in clinical development are BMS-936559 (MDX1105), which 

is currently under Phase I trials for advanced tumors and MSB0010718C, which is under 

Phase II trials for various tumors. (96, 98). 
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Other checkpoint inhibitors 

The first checkpoint inhibitor which was successfully developed was Ipilimumab, a 

fully humanized monoclonal antibody against CTLA-4. CTLA-4 primarily is the checkpoint 

protein which also plays a crucial role in limiting T-cell responses against tumor cells. 

Ipilimumab was approved by the FDA for patients with advanced melanoma (99, 100) 

(Table 2). 

 As illustrated in Table 2,  modulation of other checkpoints such as TIM3 and 

lymphocyte activation gene 3 protein (LAG-3), KIR (killer cell immunoglobulin-like 

receptor), IDO1 (indoleamine 2,3-dioxygenase 1), 4-1BB (tumor necrosis factor receptor 

superfamily member 9) and OX40 (tumor necrosis factor receptor superfamily member 4) are 

currently under investigation (101). 

 

Table 2. Current checkpoint inhibitors in development  

 

(101, 102)  

 

Drug Target Tumor type First Indication Development 

Nivolumab 

(Opdivo) 

PD-1 NSCLC, pancreatic 

cancer, renal cancer, 

Glioblastoma, 

lymphomas, SCLC, 

gastric cancer, 

melanoma, ovarian, 

multiple myeloma 
 

Malignant melanoma, 

Non-small cell lung 

cancer 

     Marketed 

Pembrolizum

ab 

(Keytruda) 

PD-1 NSCLC, head and neck 

squamous cell cancer, 

renal cell cancer, 

glioblastoma, 

lymphoma, pancreatic 

cancer, other advanced 

solid tumors.  

Malignant melanoma, 

Non-small cell lung 

cancer 

Marketed 
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Drug Target Tumor type First Indication Development 

Pidilizumab 

(CT-011) 

PD-1 Multiple myeloma, 

glioblastoma, lymphoma 

Hematological/Solid 

tumors 

Phase II 

MEDI14736 PDL-1 NSCLC, glioblastoma, 

head and neck squamous 

cell cancer, advanced 

solid tumors  

Non-small cell lung 

cancer  

Phase III 

MPDL3280A PDL-1 Bladder cancer, 

NSCLC, renal cell 

carcinoma, advanced 

solid tumors 

Urothelial bladder 

cancer/NSCLC 

Phase III 

Ipilimumab CTLA-4 NSCLC, melanoma, 

Glioblastoma, renal 

cancer, SCLC, multiple 

myeloma, gastric 

cancer, ovarian, 

pancreatic cancer, 

lymphomas   

Advanced Melanoma Marketed 

BMS-986016 LAG-3 Chronic lymphocytic 

leukemia, multiple 

myeloma, Hodgkin and 

non-Hodgkin 

lymphoma, Advanced 

solid tumors 

Hematologic/solid 

tumors 

 

 

 
 

Phase I 

Lirilumab 

 

KIR Acute myeloid 

leukemia, multiple 

myeloma, Hodgkin and 

non-Hodgkin 

lymphoma, advanced 

solid tumors  

Acute myeloid leukemia 

 

Phase II 

 PF-05082566  
 

41BB  

(CD137) 

- Hematologic/solid 

tumors 

Phase I 

 MEDI6469  
 

OX40 

(CD134) 

- Solid tumors Phase I 

  NLG-919 IDO1 - Solid tumors Phase I 
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Aim of the Study 

Immunotherapy is an emerging type of treatment approach for cancer. Previously 

published studies have focused on checkpoint blockade inhibitors targeted towards CTLA-4 

or PD-1 in various tumor types. PD-1 blocking antibodies, Nivolumab and Pembrolizumab, 

have been approved by the FDA for metastatic melanoma and NSCLC. Recently, PDL-1 

blockade has shown to enhance the function of tumor infiltrating lymphocytes (TILs) in an 

osteosarcoma metastatic mouse model (103). However, the implication of PD-1-PDL-1 

pathway in the immunotherapeutic efficacy of NK cells and/or macrophages in OS has not 

been established. 

Hence, our central hypothesis is that PD-1 blockade using anti-PD-1 antibody 

leads to regression of OS lung metastasis through the activation of macrophages and/or 

NK cells. Thus, to this end, we proposed to investigate PDL-1 expression in OS cells and 

tissues from patients with OS lung metastasis. After validating PDL-1 as a potential 

therapeutic target in various OS cell lines, we determined the therapeutic efficacy of anti-PD-

1 therapy against OS lung metastases using a human LM7 OS mouse model. We further 

delineated the novel mechanisms implicated in the effectiveness of anti-PD-1. We assessed 

PD-1 expression on NK cells and macrophages in OS lung tumors and hypothesized that the 

activation of NK cells and/or macrophages could be the major contributing factors for 

regression of OS lung metastasis.  

The study of PD-1 blockade in OS lung metastasis preclinical models and the 

understanding of mechanisms involved can provide a rationale for translating anti-PD-1 

antibodies either alone or in combination with other immunotherapies (e.g. macrophage 
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activating agents or adoptive NK cell therapy) to improve the clinical outcome of metastatic 

OS patients. 
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CHAPTER 2  

Materials and Methods 
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Cell lines 

Human osteosarcoma cell lines LM7, KRIB, U2OS, 143B, SAOS-2, C-CH-OSD, 

CCH-OS-O and MG63.2 were cultured in complete Dulbecco’s modified Eagle’s medium 

(Whittaker Bioproducts Inc. Walkersville, MD) containing 10% fetal bovine serum (Intergen, 

Purchase, NJ) and 1X antibiotic-antimycotic (Fisher Scientific, Pittsburg, PA) at 37°C in 5% 

CO2 (104, 105). SAOS-2, KRIB, U2OS, 143B and MG63.2 cells were obtained from the 

American Type Culture Collection (ATCC). LM7 cell line is a metastatic cell line, created in 

our laboratory from SAOS-2 cells by intravenous recovery from lungs of nude mice (106). 

C-CH-OSD and CCH-OS-O are cell lines obtained from patient samples, derived from pre-

treatment biopsies and were obtained from Dennis Hughes laboratory (M.D. Anderson 

Cancer Center). Cells used were between the 3rd and 10th passages and were verified to be 

mycoplasma-negative using the MycoAlert™ Mycoplasma Detection Kit (Lonza, Allendale, 

NJ). 

OS patient samples 

Paraffin-embedded tissues of lung metastases from 10 OS patients and primary 

tumors were obtained to determine PDL-1 expression. The patient protocol approval was 

done by the Institutional Review Board at The University of Texas M. D. Anderson Cancer 

Center. PDL-1 expression in OS lung metastases and primary tumors was assessed as 

described in immunohistochemistry section. 
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Animal Model  

Athymic female nu/nu mice were purchased from National Cancer Institute 

(Bethesda, MD) and housed 5 per cage in an animal facility approved by the American 

Association of Laboratory Animal Care, in accordance with the current regulations and 

standards of the U.S. Department of Agriculture, Department of Health and Human Services 

and the NIH. Experiments were conducted in accordance with the protocols and procedures 

in compliance with the Institutional Animal Care and Use Committee (IACUC) at The 

University of Texas M. D. Anderson Cancer Center. Mice were held 2 weeks before being 

used in experiments. LM7 cells (2x10
6
) were intravenously injected via the tail vein of nu/nu 

mice and the treatment was started 6-7 weeks after intravenous injection, when the formation 

of micrometastases was confirmed by hematoxylin and eosin (H&E) staining of the lung 

tissues from sacrificed mice. In Vivo MAb anti-mPD-1 (RMPI-14), was purchased from Bio 

X Cell (West Lebanon, NH). Mice were randomly divided in two groups (5 mice per group) 

and treated intraperitoneally with either PBS or anti-PD-1 antibody (200 μg/mouse) twice a 

week, for five weeks. The dose chosen was comparable to the dose used in other animal 

tumor models (107-109). Mice were sacrificed at the end of the treatment using 5% CO2 and 

lungs, spleen, liver, heart and kidney were resected. Tissues were either fixed with 10% 

formalin acetate (Fisher Scientific, Pittsburg, PA) and paraffin-embedded or were snap-

frozen in 1:1 Tissue-Tek OCT (VWR, Radnor, PA) and PBS.  

Toxicity Studies 

Tissues collected from all the animal groups were used to assess toxicity of anti-PD-1 

therapy. Analysis was performed by a pathologist blinded to the study. Serum samples from 
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all the groups were also analyzed for evidence of toxicity. Complete blood count (CBC) and 

chemistry profile was determined in all serum samples collected and compared. 

Immunohistochemistry  

Paraffin-embedded lung tissue sections were heated at 55°C for 30 min, 

deparaffinized using xylene and ethanol solutions and then rehydrated. Antigen retrieval was 

performed either by using 0.1 M sodium citrate (pH 6.0) buffer or the buffer as per 

manufacturer’s protocol. Slides were heated in pressure-cooker at 100°C for 30 min, allowed 

to cool, washed with PBS and then incubated with 3% H2O2 for 12 minutes to block 

exogenous peroxidases. For staining frozen sections, tissues were first fixed using cold 

acetone for 5 min. Blocking was performed by using either 4% fish skin solution (Electron 

Microscopy Sciences, PA, USA) for 20 min or goat-serum for 1 hour. Primary antibodies 

against hPDL-1 (1:100) (Cell signaling Technology, Danvers, MA), h-Ki-67 (1:100) 

(Neomarkers, Fremont, CA), cleaved caspase-3 (1:50) (Biocare Medical, Concord, CA), m-

F4/80 (1:200) and CD163 (1:100) (Abcam, Cambridge, MA), m-NKp46 (1:50) (Biolegend, 

San Diego, CA), or CD68 (1:50) (BD Biosciences, San Jose, CA) were added overnight at 

4°C (Table 3). Incubation with anti-rabbit-IgG-HRP (Santacruz Biotechnology, Dallas, TX) 

or anti-rat-IgG HRP (Jackson Immunoresearch, Westgrove, PA) secondary antibodies 

(1:1000) was performed for 1 hour at room temperature. Alternatively, amplifier combination 

of biotinylated anti-rabbit or anti-rat antibody with streptavidin-HRP label (Biocare Medical, 

Concord, CA) was added for 25 min, followed by PBS washes and streptavidin-HRP solution 

for 25 min. Lastly, detection was performed using 3,3′-diaminobenzidine (DAB) and 

counterstaining with hematoxylin. For negative controls, no primary antibody was added. 

Images were captured using a light microscope (Leica, Wetzlar, Germany) and quantification 
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for positive staining was performed using Simple PCI software (Hamamatsu) as previously 

described (110). 

TUNEL Staining 

TUNEL assay was performed using DeadEnd Flourometric TUNEL System 

(Promega, Madison, WI). Paraffin-embedded tissues were deparaffanized, treated with 

Proteinase K for 10 min followed by blocking of endogenous peroxidases with 3% H2O2 for 

12 minutes. The reaction was then performed using recombinant terminal transferase and 

biotin-16-dUTP (Roche Applied Sciences) for 1 hour at 37°C. Further, sections were 

incubated with 2% bovine serum albumin and 5% normal horse serum for 10 min and then 

Streptavidin-HRP label (Biocare Medical, Concord, CA) for 30 min. Finally, detection was 

performed using DAB and counterstaining with hematoxylin. Quantification of images was 

performed using Simple PCI software (Hamamatsu).  

Flow cytometry Staining 

Single cell suspensions were obtained from lung tumor nodules and spleens isolated 

from mice from different groups. Tissues were washed with PBS, immediately passed 

through 100 μm syringe filter (Corning Inc.) and treated with Ammonium-Chloride-

Potassium (ACK) lysing buffer (Fisher Scientific, Pittsburg, PA). Cell suspensions were 

suspended in FACS buffer (PBS, containing 2% FBS) and stained with antibodies or isotype-

matched IgG controls for 30 min. The antibodies used included: anti-m-F4/80-APC and 

CD11b-FITC (E-Bioscience, San Diego, CA), anti-mPD-1-PE and anti-m-NKp46-PerCP 

(Biolegend, San Diego, CA). Cells were washed in FACS buffer before detection. 10,000 
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gated-events per sample were acquired using FACS Calibur (Becton Dickinson, Mountain 

View, CA) and analysis was performed using FlowJo software (Ashland, OR).  

In vivo NK and macrophage depletion studies  

To deplete endogenous NK cells, 50μl of anti-asialo-GM1 (Wako, Richmond, VA), 

was injected i.p. into mice, twice a week for a total of 5 weeks. Treatment with anti-PD-1 

was given 24 hours after injecting anti-asialo-GM1. Combination treatment of anti-asialo-

GM1 and anti-PD-1 was performed for 5 weeks. Similar treatment scheme was used for 

macrophage depletion studies.  Liposomal Clodronate (Encapsula NanoSciences, Brentwood, 

TN) was injected (200 μl, i.p., twice a week) followed by treatment with anti-PD-1 24 hours 

later. After treatment was completed, mice were sacrificed; organs were resected and 

analyzed as described above.  

Western blotting 

Tumor lysates were obtained from lung nodules excised from mice, snap-frozen in 

liquid nitrogen and stored at -80°C. Tissues were homogenized and lysed using RIPA lysis 

buffer (Santa Cruz Biotechnology, Dallas, TX). Protein concentration in lysates was 

determined using a Bio-Rad protein assay (Hercules, California). Protein lysate (40 μg) was 

boiled for 5 min and resolved using 10% SDS-/PAGE followed by nitrocellulose membrane 

transfer. Membranes were blocked using 5% milk in TBST followed by overnight incubation 

with either of primary antibodies (1:1000 in 5% milk in TBST): PDL-1, p-Stat3-705, total 

Stat3, phospho-p44/42 MAPK (Thr202/Tyr204), p44/42 MAPK, cleaved caspase-3 (Asp175) 

and total caspase-3 (Cell Signaling, Danvers, MA) (Table 3).  Membranes were washed and 
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incubated with the respective secondary antibody for 1 hour. Detection was performed using 

autoradiography and quantified using Image J software. 

 

Table 3. List of Primary Antibodies 

 

Antibody Application Dilution Company 

PDL-1 

(Rabbit monoclonal) 

IHC 

 

 

1:100 (mouse OS 

lung metastases) 

1:50 (OS patient 

samples) 

Cell Signaling 

Western Blotting 1:500 

Ki-67 

(Rabbit monoclonal) 

IHC 1:100 Neomarkers 

 

 

Cleaved caspase-3 

(Rabbit Polyclonal) 

IHC 1:100 Biocare Medical 

Anti-mF4/80  

(Rat monoclonal) 

IHC 1:200 Abcam 

Anti-mNKp46 

(Rat) 

IHC 1:50 Biolegend 

CD86 

(Rat) 

IHC 1:50 BD Pharmingen 

CD163 

(Rabbit polyclonal) 

IHC 1:200 Abcam 

Anti-mF4/80-APC Flow Cytometry  E-Biosciences 

Anti-mCD11b-FITC Flow Cytometry  E-Biosciences 

Anti-mNKp46-PerCP Flow Cytometry  Biolegend 

Anti-mPD-1-PE Flow Cytometry  Biolegend 

Phospho-Stat3 (Tyr 

705) 

(Rabbit monoclonal) 

Western Blotting 1:1000 Cell Signaling 

Stat3 

(Rabbit monoclonal) 

Western Blotting 1:1000 Cell Signaling 

Phospho-Stat1-701 

(Rabbit monoclonal) 

Western Blotting 1:1000 Cell Signaling 

Stat-1 

(Rabbit monoclonal) 

Western Blotting 1:1000 Cell Signaling 

Phospho-p44/42 

MAPK 

(Rabbit monoclonal) 

Western Blotting 1:1000 Cell Signaling 
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Antibody Application Dilution Company 

p44/42 MAPK  

(Rabbit polyclonal) 

Western Blotting 1:1000 Cell Signaling 

Cleaved caspase-3 

(Asp175) 

(Rabbit monoclonal) 

Western Blotting 1:1000 Cell Signaling 

Caspase-3 

(Rabbit monoclonal) 

Western Blotting 1:1000 Cell Signaling 
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CHAPTER 3  

PDL-1 and PDL-2 expression in human OS cell lines 
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Rationale 

 Previously published studies have demonstrated upregulation of PDL-1 expression on 

cancer cells in certain cancers such as melanomas, renal, pancreatic and non-small cell lung 

cancer (72-76). Shen J. K. et al. recently showed that PDL-1 transcript levels were 

upregulated in human OS tumor samples as well as patient cell lines (111, 112). As PDL-1 

expression has been studied as an immune escape mechanism utilized by cancer cells, we 

sought to determine if this may be a potential therapeutic target in OS. In addition, as PD-1 is 

known to bind to two ligands PDL-1 and PDL-2, we also tested PDL-2 expression in OS cell 

lines.  

Hence, in Chapter 3, the major objective was to determine the basal PDL-1 and PDL-

2 expression in human OS cell lines in vitro. For this purpose, we used a panel of OS cell 

lines including LM7, KRIB, U2OS, 143B, SAOS-2, C-CH-OSD, CCH-OS-O and MG63.2 

with varying metastatic potential.  Initially, Flow cytometry assays were performed to 

determine and compare the surface levels of PDL-1and PDL-2 in OS cells. Since PDL-1 is a 

transmembrane receptor, we also assessed if there are any differences between surface 

localization and total protein expression of PDL-1. We determined the total PDL-1 levels by 

western blotting.  

As PDL-1 is an inducible receptor, and its expression can be modulated by the 

cytokines such as IFN-γ in vitro, we determined if PDL-1 expression on OS cell lines can be 

induced by IFN-γ by performing Flow cytometry assays (113, 114)  
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Results 

PDL-1 is expressed in OS cell lines and total PDL-1 expression levels co-relate with 

surface expression levels 

PDL-1 expression was determined in human OS cell lines KRIB, LM7, SAOS-2, C-

CH-OSD, C-CH-OSO and MG63.2. MDA-MB-231, a triple-negative breast cancer cell line, 

known to express high levels of PDL-1 was used as a positive control. Figure 3 A. represents 

the PDL-1% positivity as compared to IgG controls and Figure 3 B. depicts the MFI 

normalized to isotype IgG.  We found constitutive PDL-1 expression in 5 out of 8 OS cell 

lines, with the highest constitutive expression seen in KRIB, U2OS and 143 B cell lines (MFI 

of 29.2, 25.2, 16.8) (Figure 3 A and B ). C-CH-OSD, C-CH-OSO and MG63.2 had very low 

levels of baseline PDL-1 expression (MFI of 2.1, 1.1 and 1.9). LM7 and SAOS-2 cell lines 

had intermediate-high PDL-1 expression levels (MFI of 5.9 and 5.0). Total PDL-1 levels in 

OS cell lines were also examined by western blotting. It was observed that PDL-1 is 

expressed in KRIB, U2OS, 143 B, LM7 and SAOS-2 cells (Figure 3 C and D). Further, the 

total PDL-1 expression pattern was similar to that of surface levels of PDL-1, which 

indicated that PDL-1 at the surface reflected the total PDL-1 protein. Variable PDL-1 

expression levels were observed in OS cell lines, possibly due to the intrinsic differences 

between the OS cells.  
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A.  

 

B.  
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C.  

  

D.  

 

Figure 3.  PDL-1 is expressed in OS cell lines.  

A. Flow cytometry analysis was performed to assess surface PDL-1 expression in a panel of 

OS cell lines and MDA-MB-231 cells as a positive control. Staining was performed using 

either IgG-APC or PDL-1-APC antibody for 30 min. Representative flow charts are shown; 

B. Mean and standard deviation of PDL-1 positivity compared to IgG controls as determined 

by flow cytometry from three independent experiments; C. OS cell lines were cultured, 

lysates were collected using RIPA buffer and proteins were resolved using 10% SDS-PAGE 

followed by probing with anti-hPDL-1 antibody. MDA-MB-231 cells were used as a positive 

control and Actin served as a loading control; D. Quantification of PDL-1 levels in OS cell 

lines was done relative to actin levels using Image J analysis 
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IFN-γ causes an upregulation of PDL-1 expression in OS cells in vitro 

We further investigated if PDL-1 expression on OS cells with intermediate and low 

baseline expression was inducible. There was a significant increase in PDL-1 expression 

after IFN-γ addition in SAOS-2 (11 to 118), LM7 (4.3 to 46) and C-CH-OSD (4.4 to 68.9). 

(Figure 4 A and B). There was also an increase in PDL-1 after IFN-γ induction in C-CH-

OSO (1.0 to 11.9), although not significant. The significant increase in PDL-1 expression 

after IFN-γ indicates that PDL-1 expression could be further modulated by the cytokine 

microenvironment in vivo. Thus, cells with lower baseline PDL-1 expression in vitro could 

potentially show a significant response towards PD-1 blockade in vivo. 

A.  
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Figure 4. IFN-γ induces PDL-1 expression in OS cells.  

A. LM7, SAOS-2, C-CH-OSD, C-CH-OSO cells were treated with IFN-γ (200U/ml) for 24 

hours. Flow cytometry analysis was performed using anti-PDL-1-APC antibody or IgG-APC 

isotype control. Representative flow charts are shown; B. Summary from two independent 

experiments showing mean and standard deviations for PDL-1 positivity (*: p<0.05). 

 

Very low levels of PDL-2 are expressed in OS cell lines 

PDL-2 expression on OS cell lines was determined using flow cytometry analysis 

with custom-made anti-human PDL-2-APC antibody using B-16 cells overexpressing PDL-2 

(B16-PDL-2) as a positive control. Figure 5 depicts that very low levels of PDL-2 were 

expressed in all OS cell lines (LM7: 1.3, KRIB: 1.07, SAOS-2: 1.21, U2OS: 1.14, C-CH-

OSD: 1.1, C-CH-OSO: 0.98, MG63.2: 1.08), as compared to the positive control cells 

(MFI=11.3). LM7 had relatively the highest PDL-2 (MFI=1.31) expression amongst all OS 

cell lines. This corroborates the published data that PDL-1 is the major dominant PD-1 ligand 

that is expressed on a variety of hematopoietic and non- hematopoietic cells and that PDL-2 

expression is expressed in very few cells and tissues (115, 116). 
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A.  
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PDL-2 expression in OS cell lines
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Figure 5. PDL-2 expression was low in OS cells. 

Flow cytometry analysis was performed in OS cells with anti-hPDL-2-APC antibody using 

B-16 overexpressing PDL-2 cells as a positive control. Representative flow charts are shown 

above. 
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Summary 

These data support our hypothesis that PDL-1 is a key potential therapeutic target is 

OS. We showed that PDL-1 is expressed in a majority of the OS cell lines in vitro at the 

surface as well as at the total protein level as demonstrated by flow cytometry and western 

blotting analysis.  PDL-1 is variably expressed in OS cells, possibly due to the genomic 

differences in between the cell lines. Atefi M. et al. demonstrated similar findings of variable 

PDL-1 expression in a panel of 51 melanoma cancer cell lines. They further showed that 

PDL-1 expression did not co-relate with the oncogene-driver mutations (PTEN, MAPK or 

PI3-K-Akt activation mutations) in these cell lines (117). 

We also demonstrate that the OS cell lines with lower PDL-1 levels (C-CH-OSO, C-

CH-OSD LM7 and SAOS-2) express higher PDL-1 levels when exposed to the cytokine 

IFN-γ, thus proving that PDL-1 is inducible in OS cells. Other studies such as those in breast 

cancer and multiple myeloma have also revealed an induction of PDL-1 with IFN-γ (118, 

119). This is particularly crucial as it shows that the expression of PDL-1 may be upregulated 

in the in vivo microenvironment, even if it is not present at higher levels in vitro. IFN-γ from 

immune cells (e.g. T cells and macrophages) has been shown to increase PDL-1 expression 

on tumor cells in vivo (57, 120).  This data further provided a stimulus for our study to target 

PDL-1 using in vivo OS models. We used the LM7 (with intermediate, but inducible PDL-1 

expression) human OS mouse model for our studies. Finally, we confirmed that the 

expression of the second ligand for PD-1, i.e., PDL-2 is minimal in OS cells, suggesting that 

it is not the crucial regulator for immune escape mechanisms in OS. 
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CHAPTER 4  

PDL-1 expression in human OS patients 
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Rationale 

Our data from Chapter 3 indicate that PDL-1 is highly expressed in human OS cell 

lines in vitro. Numerous studies have reported PDL-1 upregulation in numerous cancer types 

such as melanoma, renal, non-small cell lung cancer, head and neck, ovarian, breast, gastric 

cancer, pancreatic cancer and glioblastomas (72-76). PDL-1 expression has also been 

associated with poor clinical outcomes such as worse prognosis, poor survival or metastasis 

(72, 74, 121). For example, Thompson et al. and Krambeck et al. showed PDL-1 expression 

in 24% paraffin-embedded renal carcinoma tumor tissues, primarily at the cell surface. It was 

also demonstrated in these studies that PDL-1 was associated with clinicopathological 

characteristics such as higher grade, advanced tumor-nodal-metastatic (TNM) stage, 

metastatic progression and increased risk of death (73, 122). Similarly, in breast cancer, 

intra-tumoral PDL-1 expression on the surface and cytoplasm was seen in 50% of patients 

and was associated with poor prognostic factors  (123, 124).  PDL-1 was also discovered to 

be an independent prognostic factor for pancreatic cancer patients, overall survival and 

progression-free survival in patients with ovarian cancer, and disease-free survival in patients 

with hepatocellular carcinoma (76, 79, 125). Thus, a plethora of recent studies reflect the 

importance of PDL-1 in cancer and it’s co-relation to the patient clinical outcomes. 

PDL-1 expression in primary and metastatic lung OS has not been addressed till date. 

Hence, the aim of this chapter was to determine the role of PDL-1 as a potential target in the 

translational setting by evaluating the PDL-1 expression in patients with OS lung metastasis. 

PDL-1 expression  and it’s localization pattern was determined by IHC staining using 

paraffin-embedded tissues of lung metastases and primary tumors from OS patients. 
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Results 

PDL-1 is expressed in lung metastases and primary tumors from OS patients 

In order to determine PDL-1 expression in OS patients, we obtained paraffin-

embedded tissues of lung metastases and primary tumors from OS patients. IHC analysis was 

performed using rabbit monoclonal anti-human PDL-1 antibody using appropriate negative 

and positive control (lung adenocarcinoma) tissue slides. The staining was examined and 

confirmed by a pathologist. Our results showed that PDL-1
+
 tumor cells were observed in 8 

out of 10 patients (~80%) in comparison with the negative controls (Figure 6 A). Further, 

PDL-1 expression was present in the membrane and cytoplasm of the OS lung metastases. 

There were variable patterns of expression (focal or scattered) seen within different OS 

patients. The quantification data revealed that an average of ~30% PDL-1 positivity was 

observed in the lung metastases from the patient group (Figure 6 B). Also, 6 out of 10 

patients (60%) showed PDL-1 expression below 30% whereas 4 out of 10 patients (40%) 

showed PDL-1 expression above the median 30%. Our data demonstrated that PDL-1 is 

expressed in lung metastases from OS patients and the expression pattern is variable. 

Similarly, we found that PDL-1 was also expressed in the bone tumors of OS patients. 

We used three representative OS primary bone tumor paraffin-embedded samples for PDL-1 

staining. We found variable levels and pattern of PDL-1 expression in primary samples as 

well (Figure 6 C). 
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C.  

 

D.  
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Figure 6. PDL-1 is expressed in OS patient lung metastases and primary bone tumors. 

A. IHC staining was performed on paraffin-embedded tisssues for lung metastases from 10 

OS patients, using anti-hPDL-1 antibody and lung adenocarcinoma tissue as a positive 

control; B. Quantification of PDL-1 positivity as analyzed by Cell Quest software. Mean 

PDL-1 expression is ~30%; C. IHC staining for primary bone tumor slides from OS patients 

was also performed using anti-hPDL-1 antibody. 

 

Summary 

Our in vitro data demonstrated PDL-1 expression in the various human OS cell lines. 

Further, we also noted that PDL-1 expression was variable within the panel of cell lines. 

Here, we wanted to evaluate whether PDL-1 is expressed in the actual tumor 

microenvironment of OS patients and if it contributes to lung metastatic disease. Hence, we 

examined PDL-1 expression in OS patients in the primary tumors and lung metastases. 

Our results demonstrate that PDL-1 is expressed in OS patients, indicating that it may 

play a role in immunosuppression of OS lung metastatic disease. We found PDL-1 
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expression in both primary tumors and lung metastases from OS patients, implying that PDL-

1 may play a role in both the growth of primary tumors as well as metastatic spread to the 

lungs. PDL-1 expression has been previously shown in other cancers in other studies; 

however, our group has been the first to demonstrate PDL-1 expression in paraffin-embedded 

tissues in OS patients in both primary and metastatic state. Another study has shown PDL-1 

expression in 75% of OS metastatic patients using immunofluorescence assays, but could not 

detect PDL-1 in primary OS patients (103). 

In our studies, we have not only shown PDL-1 expression but have also uncovered 

the finding that there is a variable expression of PDL-1 within OS patient samples and that 

the pattern of membrane/cytoplasmic expression may differ within various OS patients. This 

may be due to the fact that OS entails a very complex group of cancer sub-types with 

variable genomic characteristics. These findings are particularly important as PDL-1 is being 

used as a biomarker for clinical studies using PD-1 targeting therapies. Various cut-offs have 

been used to define PDL-1 positivity for IHC staining method. Recently, Checkmate-057 

phase III study demonstrated that patients with >1% PDL-1 positivity showed better clinical 

responses such as objective response rate (ORR), overall survival and progression-free 

survival in pre-treated NSCLC patients (126). 

 Thus, it is crucial to evaluate PDL-1 expression in OS patients to enable even 

patients with as low as 1% PDL-1 expression to have access to PD-1 targeted therapies. 

Hence, evaluation of PDL-1 in different OS patient sub-types is of translational significance 

as it will help in pre-selection of patients with PDL-1 expression for the treatment with anti-

PD-1 or anti-PDL-1 antibodies. 
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CHAPTER 5  

Therapeutic efficacy against OS lung metastases in vivo through inhibition of tumor cell 

proliferation and increased tumor cell apoptosis 
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Rationale 

Our data obtained using OS cell lines and OS patients, as demonstrated in Chapters 3 

and 4, led us to the discovery that PDL-1 is a novel therapeutic target in OS. The efficacy of 

anti-PD-1 or anti-PDL-1 antibodies either alone or in combination with other checkpoint 

inhibitors in vivo has been shown in several cancers such as melanoma, colon cancer and 

pancreatic cancer (60, 76, 127-130). Recently, the effect of blocking PDL-1 was 

demonstrated against OS lung metastasis in K7-M2 mouse model (103). Most of the studies 

have focused on T cells as a mechanism of immune-suppression in the tumors. Here, we 

investigate the effect of blocking the interaction of PD-1 receptor on macrophages and NK 

cells with PDL-1 on OS cells in vivo in a human xenograft model using an anti-murine-PD-1 

(anti-mPD-1) antibody. 

Our data reveals that PDL-1 is expressed in LM7 cells and earlier findings from our 

lab have demonstrated that LM7 cells are susceptible to NK cell cytotoxicity (34). In 

addition, our lab has previously established the nude mouse metastatic model showing that 

spontaneous metastasis of LM7 cells to the lungs (106). Since this model can be utilized to 

form pulmonary micro-metastatic disease, it is an ideal model for assessing the efficacy of 

immune-modulating agents. Most of the earlier studies have focused on the significance of T-

cell activation in the therapeutic responses of anti-PD-1. However, the effect of blockade of 

PD-1 on NK cells and macrophages has not been investigated till date. Hence, we were 

interested in studying the role of NK cells and macrophages in the immunosuppressive OS 

lung microenvironment. With this aim, we used LM7 human xenograft nude mouse model 

for the purpose of studying the therapeutic responses of anti-PD-1 against OS lung 

metastasis.  
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Anti-mPD-1 was used with the intent of blocking the endogenous PD-1 receptor on 

murine NK cells and macrophages. It has been shown that the binding affinities of mPD-1 to 

mPDL-1 and mPD-1 to hPDL-1 are equivalent, due to the 77% homology between murine 

and human PDL-1. Also, there is a significant homology between mPD-1 and hPD-1 receptor 

(52, 131, 132). Hence, we hypothesized that mPD-1 on immune cells can bind to hPDL-1 on 

tumor cells (LM7) and this interaction can be blocked using anti-mPD-1 antibody. 

LM7 cells were intravenously injected in nu/nu mice to establish micro-metastatic 

disease. After 7 weeks, lungs were excised to confirm micro-metastases by H and E staining. 

Mice were randomly divided in two groups of n=5 before starting treatment. Anti-mPD-1 

(RMPI-14) antibody, with the previously published dose of 200 μg/mouse, twice weekly 

regimen, intraperitoneally (i.p.), was used for treatment for 5 weeks (60, 108). Following the 

treatment, the animals were sacrificed and the lungs and other organs were obtained for 

further analysis. 

Results 

Anti-PD-1 decreases the number of OS pulmonary macro-metastases and micro-

metastases 

Anti-PD-1 treatment was used to target OS micro-metastatic disease. As shown in 

Figure. 7, treatment of mice with anti-PD-1 (RMPI-14) for 5 weeks (n=5) resulted in 

significant decrease in the mean number of LM7 macro-metastases (visual) and micro-

metastases (microscopic) (p< 0.05). This showed that PD-1 blockade significantly reduced 

the prevalence of lung metastases in LM7 mouse model. 
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Figure 7. In vivo anti-PD-1 administration led to a decrease in the number of OS lung 

metastases. 

Mice with established micrometastases were administered either PBS or anti-PD-1 (i.p., 200 

μg/mouse), twice weekly for 5 weeks. Lungs were excised and the number of OS lung 

macrometastases and micrometastases were counted. Statistical analysis was performed using 

student’s t-test (*: p< 0.05). 

 

Anti-PD-1 decreases OS tumor cell proliferation 

To determine the mechanisms involved in the therapeutic efficacy of anti-PD-1, we 

determined the effect on tumor cell proliferation by performing IHC staining of Ki-67 for 

paraffin-embedded tissues of LM7 lung metastases. Ki-67 is a used as a marker for cell 

proliferation in vivo (133). Ki-67 is strictly associated with cell proliferation and is present in 

all phases of the cell cycle, but absent in the resting phase (134). Figures 8 A and B. depict 

that the number of Ki-67
+
 proliferating tumor cells were significantly decreased in anti-PD-1 

treatment mice group as compared to the PBS controls (p<0.05). The quantification of Ki-67 

positivity was calculated from three random fields in slide sections from mice in PBS and 

anti-PD-1 treated groups by Cell Quest Software. 
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A.  

 

B.  

 

Figure 8. In vivo anti-PD-1 administration led to a decrease in LM7 tumor cell 

proliferation. 

A. IHC staining was performed for lung metastasis sections from mice using anti-human-Ki-

67 antibody. Representative sections are shown. (Magnification: 40X). B. Quantification for 

Ki-67 positivity was done in 3 random microscopic fields using Cell Quest Software and 

student’s t-test was performed. (p<0.05) 
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Anti-PD-1 treatment leads to enhanced OS tumor cell apoptosis in vivo 

In order to assess if anti-PD-1 antibody led to increased tumor cell death, we 

quantified apoptosis by IHC staining of cleaved caspase-3 and TUNEL. Caspase-3 is the 

central ‘effector’ activated death protease that activates the cleavage of other proteins in the 

programmed death pathway. As it is a crucial mediator in the apoptosis signaling pathway, 

the active or cleaved form of caspase-3 acts as an important readout in apoptosis assays 

including IHC staining of paraffin tissues (135, 136). Similarly, TUNEL (terminal 

deoxynucleotidyl transferase [TdT]-mediated deoxyuridinetriphosphate [dUTP] nick end 

labeling) assay detects double-strand DNA fragmentation in samples (137, 138)). Apoptotic 

nuclei can be easily identified in fixed paraffin tissue sections by TUNEL, thus providing a 

measure of cell death (139, 140). Here, we show that tumor sections from anti-PD-1 treated 

mice displayed significantly higher levels of cleaved caspase-3 (Figure 9 A and B) and 

TUNEL (Figure 9 C and D) positivity as compared to respective PBS treated control 

sections. Positive staining is seen as brown nuclear dots. The quantification results of 

staining obtained from three random fields from mice in both groups show that these results 

are statistically significant (p<0.05). 
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A.  

 

B.  
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C.  
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D.  

 

Figure 9. Anti-PD-1 treatment increased apoptosis in LM7 OS lung metastases. 

A, C. Cleaved caspase-3 and TUNEL staining was performed to assess apoptosis in paraffin-

embedded LM7 lung metastasis tissues from mice treated with PBS or anti-PD-1. 

Representative sections are shown (Magnification: 40X); B, D. Quantification was done 

using Cell Quest Software and student’s t-test was performed. (p<0.05) 

 

 

In addition, we also confirmed the cleaved caspase-3 expression in the OS lung 

tumors from anti-PD-1 treated mice versus PBS control mice using an alternative technique. 

As IHC represents expression at the tissue level, we assessed the overall expression in lung 

tumors using western blotting. Cleaved caspase-3 and total caspase-3 expression was 

assessed in the lysates from lung tumor nodules of mice. As expected, there was an increase 

in cleaved caspase-3 and decrease in total caspase-3 expression in lysates from anti-PD-1 

treated mice as compared to PBS treated mice (Figure 10). These data indicated that anti-

PD-1 treatment led to cell death by triggering tumor apoptosis.  
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Figure 10. Anti-PD-1 treatment enhanced apoptosis in LM7 OS lung tumors. 

Lysates were obtained from LM7 lung tumor nodules of mice treated with PBS or anti-PD-1 

for 5 weeks. Western blotting was done to evaluate total and cleaved caspase-3 expression.  

 

In vivo anti-PD-1 treatment was not associated with any significant systemic toxicities 

In order to ensure that anti-PD-1 does not cause systemic toxicities after 5 week 

treatment, we performed complete blood count (CBC) and liver enzyme chemistry tests. 

Serum was obtained from 5 mice after 5 weeks of anti-PD-1 treatment and parameters such 

as hemoglobin (Hb), hematocrit, platelets and WBC counts were computed. It was found that 

there were no significant differences in the mean values of hemoglobin, hematocrit, platelets 

and WBCs between the PBS treated and anti-PD-1 treated mice groups (p>0.05) (Figure 11). 

In addition, the values obtained for these parameters were within the normal ranges found in 

healthy nu/nu mice (Hb: 14.4-15 g/dL, Hematocrit: 44-44.6%, Platelets: 813-1100*10
3
, 

WBCs: 5.7-7*10
3
). These data indicated that anti-PD-1 treatment did not induce any 

significant systemic inflammation.  
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Figure 11. No significant differences of CBC functions were observed after anti-PD-1 

treatment in mice. 

CBC tests included analysis for hemoglobin, hematocrit, platelets and WBC counts from 

blood of PBS and anti-PD-1 treated mice after 5 weeks. Statistical analysis was performed 

using student’s t-test (p>0.05). 

 

Also, liver enzyme chemistry levels of the control and treated animals were 

determined in a similar way. Specifically, serum was obtained and tested for AST (aspartate 

aminotransferase) and ALT (Alanine transaminase) liver enzymes. We found no significant 

differences in AST, ALT and AST/ALT ratio between the control and treated mice groups 

(Figure 12). Also, these values are within the normal ranges found in healthy nu/nu mice 

(AST: 110-174 U/L, ALT: 33.4-60 U/L, AST/ALT: 2.9- 3.4). This implied that anti-PD-1 did 
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not induce any significant liver damage. Overall, we conclude that there were no significant 

systemic toxicities induced by anti-PD-1 treatment. 
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Figure 12. No significant differences were observed in liver enzyme chemistry tests after 

anti-PD-1 treatment in mice.  

Liver enzyme chemistry included tests for AST and ALT liver enzymes from serum of PBS 

and anti-PD-1 treated mice after 5 weeks. Statistical analysis was performed using student’s 

t-test (p>0.05).  

 

 

Anti-PD-1 treatment did not cause acute or chronic toxicities as evaluated by histological 

examination 

In order to determine the toxic effects at the tissue level, we performed histological 

examination of organs by sacrificing the animals treated for 5 weeks with either PBS or anti-

PD-1 treatment. We obtained lungs, spleen, liver, heart and kidneys from mice followed by H 
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and E staining. Pathological examination was performed under the supervision of Dr. John 

Stewart (Department of Pathology, MD Anderson Cancer Center). There were no significant 

toxicities, inflammation or necrosis/scarring observed in the various organs after anti-PD-1 

treatment (Figure 13). This showed that anti-PD-1 therapy was efficacious without causing 

non-specific effects on the mouse organs. 
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Figure 13. No specific pathological changes in the mouse tissues were observed after 

anti-PD-1 treatment for 5 weeks. 

H and E staining was performed for lungs, spleen, liver, heart and kidneys from mice after 

PBS or anti-PD-1 treatment for 5 weeks. Pathological examination was performed to 

examine toxicities in tissues microscopically. 

 

Summary 

In this chapter, we demonstrated that anti-PD-1 was effective in inducing regression 

of OS lung metastases in mice. Using a human OS model, we observed that there was a 

significant inhibition in the development of lung metastasis after anti-PD-1 treatment. We 

interpret this to mean that the therapeutic efficacy of anti-PD-1 measured by the number of 

macro and micro-metastases formed was secondary to the blockade of the PD-1-PDL-1 

interaction. Further, this was accompanied by induction in tumor cell apoptosis, represented 

by cleaved caspase-3 activation. We also found that there was a significant decrease in the 

tumor cell proliferation, as seen by the cell proliferation marker, Ki-67. It has been shown 
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that there is an imbalance of apoptosis and proliferation during cancer progression (141). 

Apoptosis and proliferation are linked by cell-cycle regulators and apoptotic stimuli can 

affect both the processes (142). The degree of apoptosis and proliferation occurring in a 

particular cell milieu ultimately determines the cellular outcome. Our data indicates that the 

mechanisms involved in the efficacy of anti-PD-1 include both induction of the apoptotic 

pathway as well as inhibition of tumor cell proliferation, which ultimately lead to the 

inhibition of growth of metastatic tumors. The effects of anti-PD-1 treatment on cell cycle 

may be performed in future. Since there is an enhancement of apoptosis, we can predict that 

there would be G1 arrest and a sub-G1 peak after anti-PD-1 treatment. In addition, since 

there is a decrease in tumor cell proliferation, we could also predict that there may be an 

decrease in the percentage of tumor cells in the S phase and/or G2/M phase. This can be 

confirmed in vivo through reduced expression of cell cycle regulators, Cyclin D/Cyclin E that 

are crucial in G0/G1 phase transition, by western blotting. Cyclins D and E are involved in 

progression though G1 and G1/S phases. Similarly, since pRb is involved in G1/S phase 

entry, reduced levels of pRb may be assessed in tumor lysates (143, 144) .  

Anti-PD-1 drugs have been known to cause immune-related side-effects including 

pneumonitis, thyroiditis, hypophysititus in the clinic (82, 145, 146). Hence, we determined if 

anti-PD-1 caused significant toxicities when used for treatment in nude mice at the dose at 

which it resulted in efficacy. However, no hematologic toxicity as determined by CBC. Anti-

PD-1 drugs such as Nivolumab are known to cause hepatic and gastrointestinal effects like 

hepatitis, colitis in the clinic. Certain patients have also shown elevation of alanine 

aminotransferase (ALT) levels and aspartate aminotransferase (AST) (82, 145). 

Hepatotoxicity is indicated by an increase in liver enzymes such as AST and ALT. We 
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observed no changes in the liver enzyme levels or any pathological changes in the liver, lung, 

spleen, kidney, heart or pancreas after anti-PD-1 treatment. Our data showed that there were 

no significant toxicities (systemic or pathological) observed on anti-PD-1 treatment. This is 

of crucial importance as it demonstrated that anti-PD-1 exerted targeted organ-specific effect 

at the lung tumor site, without affecting other organs to cause side-effects or toxicities. Thus, 

we established that anti-PD-1 was safe for administration at the dosage we administered. 
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CHAPTER 6  

Enhanced NK cell and macrophage infiltration in OS lung tumors after PD-1 blockade 
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Rationale 

Many studies have previously demonstrated the anti-tumor efficacy of PD-1/PDL-1 

inhibitors in several mouse tumor models like melanoma, NSCLC, renal cancer, colon cancer 

and pancreatic cancer (60, 147, 148). Anti-PD-1 antibodies have also shown therapeutic 

efficacy in combination with other checkpoint inhibitors such as CTLA-4 and LAG-3 (129, 

149). Recently, the effect of blocking PDL-1 was shown against OS lung metastasis in K7-

M2 mouse model (103). However, all these studies have demonstrated that blockade of PD-

1/PDL-1 leads to an increase in the T-cell infiltration, activation of tumor-specific T cells and 

recruitment of effector T cells to the tumor sites, decrease in the number and deactivation of 

Tregs at the tumor site, upregulation of pro-inflammatory cytokines and downregulation of 

immunosuppressive cytokines (60-63). In addition, PD-1 has been known to be upregulated 

on tumor infiltrating T cells and has been associated with T-cell dysfunction in tumors (150, 

151). PD-1 expression has not been well characterized in tumor-associated macrophages as 

well as NK cells in mouse tumor models till date. 

 Our data in Chapter 5 showed anti-tumor efficacy of anti-PD-1 against human LM7 

OS lung metastases in a nude mouse model devoid of T cells, which was accompanied by 

increased apoptosis. We therefore hypothesized that PD-1 blockade might be inducing the 

migration of non-T immune cells (NK and macrophages) into the lung tumors, which 

ultimately lead to tumor cell apoptosis. Thus, in Chapter 6, we analyzed PD-1 expression on 

NK cells and macrophages in the OS lung tumors. We further determined the number of NK 

cells and macrophages from mice in the lung tumor nodules and in OS lung metastases by 

utilizing two techniques, flow cytometry and IHC respectively. We also determined the 

number of immune cells in spleen, the lymphoid organ which initiates immune responses 
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towards antigens. This was to ascertain if there was any overall systemic increase in the 

number of immune cells after anti-PD-1 treatment. Flow cytometry analysis was performed 

by obtaining single-cell suspensions of lung tumor nodules and spleens from mice. We used 

mNKp46 and mF4/80 as markers for murine NK cell and macrophages respectively. 

Similarly, IHC was performed on paraffin-embedded tissues of OS lung metastases and NK 

and macrophages were stained using antibodies against mNKp46 and mF4/80. 

Results 

PD-1 expression is upregulated on NK cells and macrophages in OS lung tumors 

Figure 14 A. shows the macrophage population within LM7 lung tumor nodules 

identified as F4/80
+
/CD11b

+
. We observed that PD-1 was upregulated on macrophages in OS 

lung tumor nodules in nude mice. F4/80
+
/CD11b

+
 stained for PD-1 showed that most of the 

macrophages (98.8%) had PD-1 positivity. We also showed that anti-PD-1 treatment led to a 

significant increase in the number of F4/80
+
CD11b

+
 macrophages (7.6% to 34%) double 

positive). Thus, the total number of macrophages in the tumor nodules increased on anti-PD-

1 treatment; however, the PD-1 expressing macrophage population remained the same after 

anti-PD-1 treatment. 

Similarly, double staining of NKp46 and PD-1 and using flow cytometry analysis 

revealed that PD-1 is upregulated on NK cells (Figure 14 B). Further identification of PD-1 

expression amongst NK cells subset showed that all of the cells (100%) expressed PD-1. We 

further showed that anti-PD-1 treatment led to a significant increase in the number of NK 

cells (31% to 80%). PD-1 expressing NK cell subset population remained the same after anti-

PD-1 treatment. 
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Figure 14. PD-1 was upregulated on macrophages and NK cells in OS lung tumors. 

A. Flow cytometry analysis was performed after obtaining single cell suspensions from lung 

tumor nodules from mice treated with anti-PD-1. Staining was done using anti-F4/80-APC, 

anti-CD11b-FITC, and anti-PD-1-PE antibodies and respective isotype IgG controls. PD-1 

expressing macrophages were identified by PD-1-PE, F4/80-APC and CD11b-FITC 

positively stained population; B. NK cells were identified from single cell suspensions of 

lung tumors by staining with anti-NKp46-PerCP. PD-1 expressing NK cells were identified 

by double staining of PD-1-PE and NKp46. 

 

Lower levels of PD-1 are expressed on NK cells and macrophages in the spleen from mice 

as compared to OS lung tumors 

Figure 15 A shows that amongst the macrophage sub-set population (~ 2.6%) in the 

spleens of nude mice, only 56% of the cells expressed PD-1. The numbers of macrophages in 

the spleens were unchanged on anti-PD-1 treatment (3.3% to 5.39%) and the PD-1 

expressing macrophage sub-populations remained unchanged (56.3 to 64.1%). 



www.manaraa.com

69 

Similarly, amongst the NKp46
+
 (~7.7%) in the spleen, only 35% of NK cells express 

PD-1 (Figure 15 B). Also, the numbers of NK cells (7.7% to 9.5%) remains unchanged after 

anti-PD-1 treatment as the number of immune cells remained the same. Also, PD-1 

expressing NK cell population remained unchanged (35% to 32.6%) after anti-PD-1 

treatment in the spleens of mice. Our data reflected that PD-1 receptor was highly 

upregulated at the lung tumor sites compared to that in the spleen, suggesting that 

immunosuppression was specific to the tumor microenvironment. 

 

A.  
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Figure 15. Lower levels of PD-1 are expressed on NK cells and macrophages in spleen 

as compared to OS lung tumors. 

A. Flow cytometry analysis was performed after obtaining single cell suspensions from 

spleens of mice treated with either PBS or anti-PD-1. Staining was done using anti-F4/80-

APC, anti-CD11b-FITC and anti-PD-1-PE antibodies and isotype IgG controls, PD-1 

expressing macrophage subpopulation was identified within F4/80
+
CD11b

+ 
population; B. 

Flow cytometry analysis was performed after obtaining single cell suspensions from spleens 

followed by staining using anti-NKp46-Percp and PD-1-PE to identify PD-1 expressing NK 

cells after anti-PD-1 treatment. 
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Anti-PD-1 increases the number of NK cells in OS lung metastases 

Figure 16 A. depicted a 2.5 fold increase (NKp46
+
: 19% to 44%) in the number of 

NK cells in the lung tumor suspensions of anti-PD-1 treated group compared to the control 

group. This data showed that there was a significant increase in NK infiltration in lung 

tumors after anti-PD-1 treatment. 

IHC analysis of OS lung metastases of untreated versus anti-PD-1 treated mice using 

NKp46 staining also showed significantly increased NKp46 staining in anti-PD-1 treated 

group. (Figure 16 B and C). The NKp46
+
 cells (indicated by arrowheads) were limited to 

the tumor periphery in the lung metastases of PBS treated mice, as opposed to enhanced 

staining within the entire tumor area after anti-PD-1 treatment. Negative control tissue 

showed absence of non-specific secondary antibody staining. This corroborated our flow 

cytometry data, reiterating that there was increased NK cell recruitment within the OS lung 

metastases with PD-1 blockade. 
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A.  

 

                                  Δ (PBS):0.43, Δ (Anti-PD-1):0.49 
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C.  

 

 

 

 

 

 

 

 

Figure 16. Anti-PD-1 treatment increases the number of NK cells in OS lung tumors. 

A. Flow cytometry was performed in single cell suspensions from lung tumor nodules of 

mice treated with either PBS or anti-PD-1. Staining was done with either anti-mNKp46-

PerCP or isotype IgG control antibodies; B. NKp46 staining was performed in paraffin-

embedded LM7 OS lung metastases from mice treated with PBS or anti-PD-1. 
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Representative sections are shown (Magnification: 40X); C. Quantification for was done 

using Cell Quest Software and student’s t-test was performed, (*: p<0.05). 

 

 

Anti-PD-1 increases the number of macrophages in OS lung metastases 

We also analyzed the number of macrophages in the lung tumor suspensions of anti-

PD-1 treated group and PBS treated group. We found a threefold increase in the percentage 

of macrophages (F4/80
+
: 11.8% to 31.4 %, F4/80

+
CD11b

+
: 15.6% to 33.4%) in the lung 

tumors of mice receiving anti-PD-1 antibody compared to those receiving PBS (Figure 17 

A). 

Similarly, IHC analysis of F4/80 of paraffin-embedded tissues from anti-PD-1 treated 

and PBS treated mice was used to determine overall infiltration of macrophages within LM7 

OS metastases. As seen in representative tissue sections, we noted that the ratio of the cells 

staining positive for F4/80 was significantly higher in metastases from anti-PD-1 treated 

mice as compared to PBS treated mice (Figure 17 B and C). The F4/80 positivity (indicated 

by arrowheads) was confirmed by comparing to the negative control tissue without primary 

antibody staining. Thus, this data validated the findings by flow analysis, indicating that there 

were significantly higher numbers of macrophages migrating into OS lung tumors upon anti-

PD-1 treatment. 
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CD11b
+
F4/80

+
: Δ (PBS):0.51, Δ (Anti-PD-1):0.02 
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C.  

 



www.manaraa.com

77 

Figure 17. Anti-PD-1 treatment increases the number of macrophages in OS lung 

tumors. 

A. Flow cytometry was performed in single cell suspensions from lung tumor nodules of 

mice treated with either PBS or anti-PD-1. Staining was done with either anti-mF4/80 and/or 

anti-mCD11b-FITC along with isotype IgG control antibodies; B. F4/80 staining was 

performed in paraffin-embedded LM7 OS lung metastases from mice treated with PBS or 

anti-PD-1. Representative sections are shown (Magnification: 40X); C. Quantification for 

was done using Cell Quest Software and student’s t-test was performed, (*: p<0.05). 

 

Anti-PD-1 does not alter the number of NK cells and macrophages in the spleens of mice 

Figures 18 A and B. represent the number of NK cells and macrophages in the 

spleens from two groups of mice, PBS treated and anti-PD-1 treated group. We showed that 

there was no change in the number of NK cells (7.6% to 6%) after anti-PD-1 treatment. 

Similarly, the number of macrophages also did not change after PD-1 blockade (4% to 3%). 

This data reflected that the effect of anti-PD-1 was specific to the lung tumor site and it did 

not induce a global immune response in other organs. 
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A.  

 

                         Δ (PBS):0.62, Δ (Anti-PD-1):0.53 
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Δ (PBS):0.21, Δ (Anti-PD-1):0.08 

 

Figure 18. The number of NK cells and macrophages were unchanged in spleens of 

mice after anti-PD-1 treatment. 

Flow cytometry analysis was performed after obtaining single cell suspensions from spleens 

of mice treated with either PBS or anti-PD-1. Staining was done using anti-NKp46-PerCP, 

anti-F4/80-APC and/or anti-CD11b-FITC antibodies and respective isotype IgG controls. 

 

Summary 

This chapter illustrates the novel discovery that PD-1 was expressed on both NK cells 

and macrophages in OS lung tumors in nude mice. Current literature has widely focused on 

the role of PD-1 in TILs. Recently, reports have shown PD-1 expression on activated NK 

cells in viral infection or inflammatory conditions such as tuberculosis (152, 153). 

Previously, Benson D. M. et al. showed that anti-PD-1 antibody CT-011 enhanced the NK 
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cell function (cytotoxicity) against multiple myeloma cells in vitro. This study demonstrated 

that NK cells from multiple myeloma patients had PD-1 expression whereas normal healthy 

donors did not (154). Here, we showed that PD-1 was particularly expressed on NK cells in 

the OS lung tumor microenvironment following anti-PD-1 treatment as opposed to the 

spleen. This indicates their potential role in the therapeutic activity of anti-PD-1 therapy and 

the role of PDL-1 in immune-escape of OS tumor cells. Further, we showed that the number 

of NK cells infiltrating into the OS lung tumors was significantly increased after anti-PD-1 

treatment in contrast to the spleen, where the NK cell numbers remain unchanged. It has been 

shown that mouse NK cells may play a role in inhibition of systemic metastasis of human 

glioblastoma cells in mouse models. Se Jeong Lee et al. studied that murine NK cell 

depletion induced spontaneous lung metastasis of glioblastoma cells in BALBc nu/nu mice 

(155). Hence, from our data, we predict that the efficacy of anti-PD-1 against OS lung 

metastasis and the resulting tumor cell apoptosis may be due to the mouse NK cells 

infiltrating the LM7 tumors. 

We also demonstrated that PD-1 is expressed on mouse macrophages in OS lung 

tumors. Previously, PD-1 expression on macrophages has shown to be induced in 

inflammatory responses during infections like sepsis, thus resulting in suppression of 

macrophage function (156). Although studies have elucidated higher PD-1 expression on 

macrophages/monocytes in other immune disorders such as viremic HIV-infection, it has 

never been reported in the context of tumor cells to date (157, 158). Hence, our novel finding 

of PD-1 expression on macrophages in OS lung tumors brings to light the fact that 

macrophage function may be suppressed, which contributes to an immunosuppressive 

microenvironment in OS lung metastasis. This maybe representative of an exhausted 
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macrophage phenotype. Further, we also show that PD-1 on macrophages is a novel 

therapeutic target as anti-PD-1 treatment led to an increase in infiltration of macrophages in 

OS lung tumor site as opposed to the spleen. It is known that mouse macrophages play a key 

role in killing human tumor cells by phagocytosis (159, 160). Thus, we predict that the 

mouse macrophages may be exerting their function of direct cytotoxic effect on OS tumor 

cells upon anti-PD-1 treatment as well as maybe getting involved in phagocytosis of 

apoptotic cells. 

In summary, our results not only highlight the importance of PD-1 expression on the 

innate immune cells such as NK and macrophages in OS lung metastasis but also underscore 

the resulting increase in infiltration of NK and macrophages as one of the potential 

mechanisms resulting in therapeutic efficacy of anti-PD-1. 
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CHAPTER 7  

Increased migration of M1 macrophages and decrease in migration of M2 macrophages 

after PD-1 blockade 

 



www.manaraa.com

83 

Rationale 

Our data from Chapter 6 strongly implicated the involvement of macrophages in the 

therapeutic response of anti-PD-1 against osteosarcoma lung metastasis. Previously, we have 

demonstrated the efficacy of L-MTP-PE, a macrophage and monocyte activating agent, in 

human and canine OS (8-10). Tumor-associated macrophages (TAMs) account for about 

50% of the total tumor mass and are the most abundant cells in the inflammatory infiltrate 

(161, 162). TAMs can be classified into two types, M1 or the ‘classically activated 

macrophages’ and M2 or the ‘alternatively activated macrophages’. M1 macrophages play a 

tumorigenic and bactericidal role and are activated by interferon-γ (IFN-γ) and Toll-like 

receptor ligands such as bacterial lipopolysaccharide (LPS) (163, 164). M2 macrophages, on 

the contrary, promote tumor progression, wound healing and angiogenesis and are induced 

by IL-4, IL-10 and IL-13 (165, 166). We and others have shown that L-MTP-PE, led to the 

activation of M1 macrophages due to a cytokine cascade and resulted in the death of 

osteosarcoma cells in vitro (8, 167). Owing to the significance of modulation of TAMs on 

osteosarcoma outcomes and our discovery of increased macrophage infiltration due to anti-

PD-1, we aimed to study the accumulation of sub-population of M1 macrophages versus M2 

macrophages within LM7 OS lung metastases after anti-PD-1 treatment. 

Here, we performed IHC analysis in frozen tissues from PBS treated and anti-PD-1 

treated mice to stain for M1 macrophages using CD86 staining and paraffin-embedded 

tissues for M2 macrophages using CD163 staining. CD86 and CD163 are specific markers 

for M1 and M2 murine macrophages respectively. 
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Results 

The infiltration of anti-tumor M1 macrophages increases in OS lung metastases after anti-

PD-1 treatment 

IHC analysis of M1 macrophages using CD86 staining revealed there were 

significantly higher number of CD86
+
 M1 macrophages located within LM7 metastases after 

anti-PD-1 treatment (p<0.05). This is reflected by the quantification data revealing the 

number of CD86
+
 cells in comparison with negative control. (Figure 19 A and B) 

 

A.  
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Figure 19. Anti-PD-1 treatment increases the migration of M1 macrophages in OS lung 

metastases. 

A. CD86 staining was performed for M1 macrophage sub-population in frozen LM7 lung 

metastasis tissues from mice treated with PBS or anti-PD-1. Representative sections are 

shown (Magnification: 40X); B. Quantification for was done using Cell Quest Software and 

student’s t-test was performed. (*p<0.05) 

 

The infiltration of pro-inflammatory M2 macrophage decreases in OS lung metastases 

after anti-PD-1 

Figure 20 A and C. reflect CD163 and CD206 staining for M2 macrophages in PBS 

treated mice in comparison with anti-PD-1 treated mice. We observed that there were 

CD163
+
 cells towards the periphery in PBS treated mice and that they were significantly 

decreased in anti-PD-1 treated mice (p< 0.05) (Figure 20 B). Similarly, we also showed 

using the second marker CD206 that CD206
+
 cells were significantly decreased in anti-PD-1 

treated mice (p< 0.05) (Figure 20 D). Thus, the number of pro-tumorigenic M2 macrophages 

infiltrating within the OS lung metastases were reduced on treatment with anti-PD-1 
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A.  

 

 

B.  
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C.  

 

D.  

 

Figure 20. Anti-PD-1 treatment decreases the migration of M2 macrophages in OS lung 

metastases. 

A. CD163 staining was performed for M2 macrophage sub-population in paraffin tissues of 

LM7 lung metastasis from mice treated with PBS or anti-PD-1. B. Quantification was done 

using Cell Quest Software and student’s t-test was performed, C. CD206 staining was 

performed in paraffin tissues of LM7 lung metastasis from mice treated with PBS or anti-PD-
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1, Representative sections are shown (Magnification: 40X); D. Quantification was done 

using Cell Quest Software and student’s t-test was performed, (*p<0.05) 

 

Summary 

The role of macrophages and macrophage sub-populations in the therapeutic 

responses of checkpoint inhibitors is currently unknown. As our previous data showed that 

anti-PD-1 led to increased infiltration of macrophages, we sought to determine the changes in 

the macrophage sub-populations, M1 and M2, in mice after anti-PD-1 treatment. 

Here, we discovered that there was a significant increase in the infiltration of M1 

macrophage sub-type and a decrease in infiltration of M2 macrophage sub-type after anti-

PD-1 treatment in OS lung metastases. This implies that there was an increased polarization 

of macrophages from pro-tumorigenic M2 to anti-tumorigenic M1 sub-type. This could be 

one of the mechanisms due to which there was reduced OS lung metastases observed after 

anti-PD-1 treatment. The role of anti-tumorigenic effect of M1 macrophages towards OS 

cells was demonstrated by Pahl and colleagues, when they treated M1 macrophages with L-

MTP-PE and IFN-γ (167). 

A previous study by Buddingh et al., 2011 showed that unlike other cancers, TAMs 

play an anti-metastatic role in OS. They found that higher numbers of infiltrating TAMs in 

pretreatment biopsies of OS patients correlated with better patient survival (24). However, 

they found a heterogeneous population of both M1 and M2 macrophage populations in the 

OS patient samples. Contrary to our data, a recent study showed that CD68
+
 macrophage 

infiltration in primary tissue was associated with worse survival of OS patients (112). It may 

be possible that the contribution of macrophages may be different in primary versus 

metastatic OS tissues. Another point to note is that they did not differentiate M1 and M2 
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macrophages using specific markers, but only performed CD68 staining for total macrophage 

population. 

From our studies, we demonstrated for the first time that PD-1 checkpoint blockade 

can shift the balance of M2 macrophages towards M1 macrophages, which may lead to 

inhibition of OS lung metastasis. Future clinical studies assessing the contribution of M1 

versus M2 macrophages in the anti-tumor responses of PD-1 blocking antibodies will be 

needed to address this issue. 
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CHAPTER 8  

The therapeutic efficacy of anti-PD-1 against OS lung metastases is not mediated by NK 

cells 
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Rationale 

Our data from Chapter 6 revealed that treatment of anti-PD-1 antibody led to a 

significant increase in immune infiltration of NK cells and macrophages in the OS lung 

tumors grown in nude mice. These findings indicated that the anti-tumor efficacy of anti-PD-

1 might be through either NK cells or macrophages. NK cells and macrophages are both part 

of the innate immune system and the pro-inflammatory cytokines released by activation of 

macrophages can lead to NK cell activation and vice versa (168-170). Because of this cross-

talk between NK cells and macrophages, it is possible that the NK cells and macrophages 

may either be acting interdependently or they may have independent effects of the activation 

of immune responses upon anti-PD-1 treatment against OS lung metastases. Hence, in order 

to delve deeper into the detailed mechanisms of anti-PD-1, we sought to assess the individual 

contribution of NK cells in the therapeutic efficacy of anti-PD-1. 

In order to examine if NK cells are crucial in anti-PD-1 responses, we depleted NK 

cells in nude mice using anti-asialo-GM1 antibody before anti-PD-1 treatment. Anti-asialo-

GM1 has been widely used in in vivo models including nu/nu mice and has demonstrated 

success in specifically depleting NK cells, without any effect on the other immune cells (155, 

171-174), Anti-asialo-GM1 binds to the cell surface glycosphingolipid GM1 without the 

sialic acid group, thus inhibiting NK cell activation in various mice strains (175). 

Following our earlier experimental design, we intravenously injected LM7 cells to 

form micrometastases, and mice were randomly divided in four groups of n=5 before starting 

treatment. The four groups included PBS treated, anti-asialo-GM1, anti-PD-1 and anti-asialo-

GM1+ anti-PD-1. Anti-asialo-GM1 (50 μl/mouse), was injected intraperitoneally twice 

weekly to perform NK cell depletion. In the combination group, anti-asialo-GM1 was 
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injected a day prior to anti-PD-1 treatment. Mice were sacrificed 5 weeks after treatment and 

the lungs and organs were excised for mechanistic studies. Flow cytometry and IHC analysis 

were used to confirm NK depletion in spleen and lung tumors respectively. The number of 

OS metastatic lung tumor nodules were counted. 

Results 

Anti-asialo-GM1 treatment causes significant depletion of NK cells in spleens of mice 

without any effect on macrophages 

To assess the dose required for NK depletion, we conducted pilot experiments by 

treatment of mice with anti-asialo-GM1 (50 μl/mouse), twice a week before obtaining the 

spleens. Using flow cytometry analysis, we observed > 70% depletion as observed by NKp46 

staining in the nu/nu mice (Figure 21). Further, there was no significant effect on the number 

of macrophages as the F4/80
+
 cells remained constant before and after anti-asialo-GM1 

treatment. 
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A.  

 

 

Figure 21. Anti-asialo-GM1 treatment led to a significant decrease in the number of NK 

cells in spleen. 

Flow cytometry analysis was performed after obtaining single cell suspensions from spleens 

of mice treated with either PBS or anti-asialo-GM1 treatment (50 μl, twice weekly). Staining 

was done using anti-NKp46-PerCP or isotype IgG control antibody. 

 

NK cell depletion using anti-asialo-GM1 reduced the number of NK cells in the mouse 

lung tumors 

In order to confirm whether the NK depletion technique we used was effective, we 

performed NKp46 staining in lung tumors from mice from PBS, anti-asialo-GM1, and anti-

asialo+Anti-PD-1 groups. Figure 22 A shows that that there was ~70% depletion of NK cells 

by flow cytometry in the anti-asialo-GM1 treated mice and anti-asialo+anti-PD-1 

combination group compared to the PBS treated group. Similarly, IHC analysis and 

quantification of the images proved that NKp46
+
 cells were significantly reduced in lung 
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metastases from anti-asialo-GM1 and anti-asialo + anti-PD-1 combination group compared to 

those from control PBS mice (*: p<0.05) (Figure 22 B and C.) 

 

A.  

 

B.  
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C.  

 

 

 

 

 

 

 

 

 

 

Figure 22. Anti-asialo-GM1 treatment caused a significant decrease in the number of 

NK cells in OS lung tumors. 

A. Flow cytometry analysis was performed using anti-NKp46-PerCP or isotype IgG control 

antibody after obtaining single cell suspensions from lung nodules of mice treated with either 

PBS, anti-asialo-GM1 (50 μl, twice weekly) or combination of anti-asialo-GM1 and anti-PD-

1 (200 μg/mouse), B. NKp46 staining was performed in paraffin-embedded LM7 OS lung 

metastases from mice treated with PBS, anti-asialo-GM1 or anti-asialo-GM1 and anti-PD-1. 

Representative sections are shown (Magnification: 40X); C. Quantification for was done 

using Cell Quest Software and student’s t-test was performed, (*: p<0.05). 

 

NK depletion using anti-asialo-GM1 treatment did not affect the therapeutic efficacy of 

anti-PD-1 against OS lung metastases 

To assess if NK cells mediate the therapeutic effect of anti-PD-1, we assessed the 

number of macro and micrometastases formed in mice who underwent NK depletion 

followed by anti-PD-1 treatment. As seen in Figure 23, we found that anti-asialo-GM1 

treatment by itself did not significantly alter the number of macro or micrometastases. 

Consistent with our previous data, anti-PD-1 treatment significantly decreased the number of 
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LM7 OS lung macro and micrometastases (p<0.05). The combination group of anti-asialo-

GM1 and anti-PD-1 had a similar effect as anti-PD-1 alone, as there was a significant 

decrease in both LM7 macro and micrometastases (p<0.05). These results show that NK cells 

are not implicated in the therapeutic efficacy of anti-PD-1 against LM7 OS lung metastases. 

 

A. B.  

  

 

 

 

 

 

 

Figure 23. NK depletion did not affect the therapeutic effect of anti-PD-1 against LM7 

OS lung metastases. 

Mice with established micrometastases were administered either PBS, anti-asialo-GM1 (50 

μl, twice weekly), anti-PD-1 (intraperitoneally 200 μg/mouse), or combination of anti-asialo-

GM1 and anti-PD-1 (200 μg/mouse) for 5 weeks. Lungs were excised and the number of OS 

lung macrometastases (A) and micrometastases (B) were counted. Statistical analysis was 

performed using student’s t-test (*: p< 0.05). 
 

Summary 

In this chapter, we investigated whether mouse NK cells are crucial in the anti-

metastatic responses of anti-PD-1 in LM7 OS model. To answer this question, we transiently 

depleted NK cells using a widely known drug, anti-asialo-GM1, followed by treatment with 

anti-PD-1 to assess the number of OS lung metastases formed. We discovered that the 

therapeutic effect of anti-PD-1 was not compromised in NK depleted mice. The decrease in 



www.manaraa.com

97 

the number of metastases formed on anti-PD-1 treatment after NK depletion remained the 

same as those formed on anti-PD-1 alone. Our data showed that NK cells are not the 

predominant cell types mediating the effects of anti-PD-1 against OS lung metastases. 

Additionally, anti-asialo-GM1 treatment by itself did not affect the number of metastases 

formed, which means that systemic NK cells did not play a role in OS lung metastases 

growth. 

We earlier demonstrated that there was an increased infiltration of mouse NK cells in 

OS lung tumors after anti-PD-1 treatment. Although there was increased migration of NK 

cells at the lung tumor site, NK cells were not the crucial effector cells playing the role in the 

responses towards lung metastases. This implies that additional mechanisms such as 

activation of macrophages maybe involved in rejection of metastases on anti-PD-1 treatment 

in our model. Recent studies show that macrophages can be reprogrammed to induce 

cytotoxicity against tumors. Pahl et al. showed that L-MTP-PE activated M1 macrophages 

exhibited direct cytotoxicity towards OS cells through direct phagocytosis as well as through 

soluble factors released by activated macrophages (167). Another study using combination of 

IL-2 and IL-15 gene transfer in a human small-cell lung cancer model showed that tumor 

rejection in nude mice occurred through the direct activation of macrophages, without the 

involvement of NK cells (176). On the basis on our data, we predict the involvement of 

macrophages in the anti-tumor responses of anti-PD-1. 

The cross-talk between NK cells and macrophages is complex and still being 

investigated. The cytokine mileu can influence the NK cell function and their killing 

capacity. There is a possibility that mouse NK cells may not be involved in direct 

cytotoxicity of human OS tumor cells, but can release cytokines such as IFN-γ, GM-CSF, 



www.manaraa.com

98 

TNF-α, thus causing M1 macrophage activation and killing of M2 macrophages (170, 177). 

However since NK cell depletion failed to decrease the therapeutic activity of anti-PD-1, we 

conclude that NK cells do not play an important role in the anti-metastatic effect of anti-PD-1 

against OS lung metastasis. 



www.manaraa.com

99 

CHAPTER 9  

The therapeutic efficacy of anti-PD-1 against OS lung metastases is mediated by 

macrophages 
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Rationale 

The role of macrophages in the anti-tumor responses of PD-1 checkpoint inhibitors 

has not been investigated till date. In Chapter 6, we found that PD-1 was expressed in 

macrophages, specifically in OS lung tumors. Also, antibody-mediated PD-1 blockade led to 

an increased migration of macrophages, particularly classically activated M1 macrophages, 

which are known to have anti-tumor functionality. In addition, we discovered that mouse NK 

cells did not directly contribute to the efficacy of anti-PD-1 in our OS nude mouse model. 

This led us to investigate if macrophages may be independently involved in the therapeutic 

response of anti-PD-1 against OS lung metastases. 

To examine if macrophages play a crucial role in anti-metastatic efficacy of anti-PD-

1, macrophage depletion was performed using Clodronate liposomes. Clodrosome has been 

used as a standard agent for depleting macrophages in various mouse models (178-180). As 

per our experimental design, we intravenously injected LM7 cells to form micrometastases, 

and mice were randomly divided in four groups of n=5. The four groups included PBS, 

Clodrosome (200 μl/mouse., anti-PD-1 (200 μg/mouse) and Clodrosome (200 

μl/mouse)+anti-PD-1 (200 μg/mouse). Anti-PD-1 and Clodrosome were both injected 

intraperitoneally twice weekly. In the combination group, Clodrosome was injected a day 

prior to anti-PD-1 treatment. Mice were sacrificed 5 weeks after treatment and the lungs and 

organs were obtained. Flow cytometry and IHC analysis were used to confirm macrophage 

depletion in spleen and lung tumors respectively. The numbers of OS metastatic lung tumor 

nodules were counted to assess therapeutic efficacy. 
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Results 

Macrophage depletion using Clodrosome reduces the number of macrophages in the 

mouse spleen and lungs, with no effect on NK cells 

In order to ensure that the macrophage depletion is successful, we injected mice with 

Clodrosome (200 μl/mouse), twice a week before obtaining the spleen and lungs. Using flow 

cytometry analysis, we observed a significant decrease in macrophage population 

(CD11b
+
F480

+
) as observed by CD11b and F4/80 staining in mice (Figure 24 A). Further, 

Clodrosome treatment had no effect on the number of NK cells, thus ensuring that the 

depletion was specific to macrophages (Figure 24 B). 

 

A.  
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B.  

 

Figure 24. Clodrosome treatment led to a significant decrease in the number of 

macrophages in spleens and lungs of mice 

A. Flow cytometry analysis was performed after obtaining single cell suspensions from 

spleens and lungs of mice treated with either PBS or Clodrosome (200 μl, twice weekly). 

Double staining was done using anti-CD11b-FITC and anti-F4/80-APC antibodies; B. NK 

cells were identified in spleen from mice with or without Clodrosome treatment using anti-

NKp46-PerCP or isotype IgG control antibody 

 

Clodrosome treatment before anti-PD-1 impairs the therapeutic efficacy of anti-PD-1 

against OS lung metastases 

We hypothesized that macrophages may be involved in efficacy of anti-PD-1 in terms 

of regression of OS lung metastasis. Mice having micro-metastases were depleted of 

macrophages with Clodrosome followed by anti-PD-1 treatment after 24 hours for 5 weeks. 

We assessed the effect on the lung metastases by counting the number of macro and 

micrometastases formed. As shown in Figure 25, Clodrosome treatment by itself had no 

effect on the number of metastases. Anti-PD-1 by itself caused significant decrease in both 

LM7 macro and micrometastases (p<0.05). However, the therapeutic effect of anti-PD-1 as 

determined by the number of metastases formed was significantly compromised in mice 
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following macrophage depletion by Clodrosome. These results indicate that macrophages 

play an important role in anti-metastatic effect of anti-PD-1 in OS lung metastasis. 

A. B.  

  

Figure 25. Macrophage depletion using Clodrosome impairs the therapeutic effect of 

anti-PD-1 against LM7 OS lung metastases. 

Mice with established micrometastases were administered either PBS, Clodrosome (200 

μl/mouse), anti-PD-1 (intraperitoneally, 200 μg/mouse), or combination of Clodrosome (200 

μl/mouse) and anti-PD-1 (200 μg/mouse) for 5 weeks. Lungs were excised and the number of 

OS lung macrometastases and micrometastases were counted. Statistical analysis was 

performed using student’s t-test (*: p< 0.05). 

 

Summary 

 In this chapter, we investigated if macrophages are important in the anti-tumor 

response of anti-PD-1 against LM7 OS lung metastasis. We discovered that macrophage 

depletion using Clodrosome significantly compromised the efficacy of anti-PD-1 against OS 

lung metastasis. Our findings imply that macrophages are predominantly involved as the 

effector cells in the anti-tumor responses of anti-PD-1. Further, Clodrosome by itself did not 

affect the number of metastases, which indicated that systemic macrophages did not play a 

role in OS lung metastases growth. 
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Our data correlated with the increased infiltration of macrophages, including M1 

macrophage sub-types, in OS lung tumors after anti-PD-1 treatment which we discovered 

earlier. Previous studies have shown that activated macrophages exhibit cytotoxicity towards 

OS cells through direct phagocytosis following treatment with agents such as L-MTP-PE 

(167). In addition, contrary to other cancers, TAMs play an anti-metastatic role in OS, as 

higher numbers of infiltrating TAMs in pretreatment biopsies of OS patients were found to 

correlate with better patient survival (24). As TAMs are the immune cells accounting for 

about 50% of the total solid tumor mass including OS, our results are particularly significant 

(161, 162). Our human LM7 lung metastasis model is in nude mice that are T-cell deficient. 

Thus, we can conclude that amongst the immune cell types, macrophages contributed to the 

anti-metastatic efficacy of anti-PD-1 in our LM7 OS lung metastasis model. Hence, future 

studies evaluating the role of macrophages in anti-tumor responses to the PD-1 blockade 

antibodies in the clinical settings are warranted. 



www.manaraa.com

105 

CHAPTER 10  

PD-1 expression in human OS cell lines 
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Rationale 

Our data revealed that PD-1 was expressed in NK cells and macrophages in nude 

mice in the OS lung tumors. Although PD-1 was discovered as an inhibitory receptor on 

immune cells, recent evidence demonstrated PD-1 expression on melanoma cancer cells and 

its novel implication in melanoma tumorigenesis (181). Since we are using a PD-1 blocking 

antibody, we investigated if PD-1 receptor is expressed in our OS cell lines. We hypothesize 

that if PD-1 is expressed on OS cells, anti-PD-1 treatment may have a direct cytotoxic effect 

causing decreased cell viability. 

Hence, we conducted flow cytometry analysis in a panel of OS cell lines such as 

LM7, KRIB, U2OS, 143B, SAOS-2, C-CH-OSD, CCH-OS-O and MG63.2 for obtaining 

PD-1 expression. For determining hPD-1 expression on LM7 tumors in vivo, single cell 

suspensions of LM7 lung tumors were obtained and double staining was performed using 

anti-mCD45 (a pan-lymphocyte marker) and anti-hPD-1 before performing flow cytometry. 

Results 

Variable levels of PD-1 are expressed in OS cells 

To study if PD-1 receptor itself has any potential role in OS, we examined PD-1 

expression in OS cell lines. Freshly isolated human PBMCs (peripheral blood mononuclear 

cells) stimulated by PHA (Phytohaemagglutinin) (20 μg/ml) for 48 hours were used as a 

positive control. We found a variable expression of PD-1 from 1-15 % (Figure 26 A and B). 

KRIB, U2OS, 143 B and LM7 cells had the highest PD-1 expression levels within the panel. 

Our data implicated that PD-1 on the tumor cells may also have a potential role in OS. 
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Figure 26. Variable levels of PD-1 are expressed in OS cell lines. 

A. Flow cytometry analysis was performed to assess surface PD-1 expression in a panel of 

OS cell lines including PHA-stimulated PBMCs as a positive control. Staining was 

performed using either IgG-APC or PD-1-APC antibody for 30 min. Representative flow 

charts are shown; B. Mean and standard deviation of PD-1 positivity compared to IgG 

controls as determined by flow cytometry from three independent experiments 
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PD-1 is expressed in tumor cells from LM7 OS lung metastases and lung tumors 

Figure 27 shows that ~4% cells were CD45
+
 in LM7 OS lung tumors, which are 

mouse immune cells and were used to exclude the human tumor cells. Total PD-1
+
 

population was ~9%. CD45
-
PD

+
 population represented LM7 cells tumor cells and 9%-15% 

PD-1 positivity was observed. Thus, our results showed that there were cells within the LM7 

OS lung tumors that expressed PD-1, similar to our in vitro findings.  

 

 

Figure 27. PD-1 is expressed in LM7 OS lung tumor cells.  

Flow cytometry analysis was performed after obtaining single cell suspensions from lung 

tumor nodules of mice. Double staining was done using anti-mCD45-FITC and anti-hPD-1-

APC antibodies. Representative flow charts are shown  
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Summary 

We discovered for the first time that PD-1 expression was detected in OS cell lines in 

vitro and OS lung tumors in vivo. This is a novel finding as the role of PD-1 receptor in OS 

cancer cells has not been studied before. It shows that PD-1 is not only an immune-receptor 

but it may also play a potential tumorigenic role in OS cancer cells. In this context, PDL-1 

may bind with PD-1 on cancer cells to activate downstream cancer signaling, thus promoting 

cancer progression. Previously, PD-1 expressing tumor sub-populations have been described 

in melanoma cells (11.3-29.5%) as well as melanoma tumors (8.7 %) (181). Similarly, our 

data showed ~15 % PD-1 positivity in LM7 OS cells and 9-15 % in LM7 lung tumors. 

Hence, the therapeutic effect of anti-PD-1 as we demonstrated in our in vivo LM7 model may 

be in part due to the PD-1 expression on LM7 OS cells. This highlights the importance of 

PD-1 receptor on OS cancer cells as potentially interesting independent target for evaluation. 
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CHAPTER 11  

p-Stat3/p-Erk1/2/PDL-1 pathway as a molecular mechanism involved in anti-PD-1 

efficacy against OS lung metastasis 
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Rationale 

In Chapter 10, we showed that PD-1 is expressed in the panel of OS cell lines in vitro. 

As we observed an inhibitory effect on LM7 tumor cell proliferation, we hypothesized that 

anti-PD-1 may exert an effect on by inhibiting signaling in LM7 OS tumor cells. Here, we 

investigate the signaling pathways that are altered after anti-PD-1 in LM7 tumors in vivo. We 

primarily evaluated PDL-1 expression as well as its key regulators, p-Stat3-703 and p-Erk1/2 

(extracellular signal-regulated kinase ½). In addition, p-Stat1, levels were also determined. 

We also evaluated cleaved caspase-3 protein expression to assess apoptosis. 

We assessed PDL-1 expression on LM7 OS lung metastases with or without anti-PD-

1 treatment by IHC staining. For in vivo experiments, we obtained lysates from tumor 

nodules of mice treated with anti-PD-1 for 5 weeks to perform western blotting. 

Results 

PDL-1 expression decreases in OS lung metastases after anti-PD-1 treatment 

Figures 28 A and B depict representative images and quantification of PDL-1 

staining from LM7 OS metastases of PBS treated mice compared to anti-PD-1 treated mice. 

We used the antibody against human PDL-1 for staining. We observed that there was a 

significant decrease in PDL-1 expression on LM7 lung metastases after anti-PD-1 treatment 

with respect to the PBS controls (p<0.05). This implies that blocking PD-1/PDL-1 interaction 

due to anti-PD-1 could be causing the PDL-1
+
 LM7 cells to die over 5 week treatment, 

resulting in an overall decrease in PDL-1
 
positivity. 
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A.  

 

B.  

 

Figure 28. Anti-PD-1 decreased PDL-1 expression in LM7 OS lung metastases.  

A. PDL-1staining was performed for in paraffin tissues of LM7 lung metastasis from mice 

treated with PBS or anti-PD-1 using anti-hPDL-1 antibody. B. Quantification was done using 

Cell Quest Software and student’s t-test was performed, *p<0.05. 
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PDL-1 and phosphorylation of Erk1/2 and Stat3-705 decreases in lung tumors after anti-

PD-1 

Figure 29 A and B. depicts that PDL-1 levels were significantly decreased by about 

50% on anti-PD-1 treatment in lung tumor nodules compared to PBS controls as determined 

by western blotting and Image J analysis. This correlated with the IHC data shown above. 

Since we were interested in delineating the mechanism by which PDL-1 was reduced on anti-

PD-1 treatment, we evaluated p-Stat3-705 and p-Erk1/2 levels. We observed that there was a 

significant decrease in p-Stat3-705 levels (~80%) as well as total Stat3 levels in lung tumors 

after anti-PD-1 treatment. However, p-Stat1-705 as well as total Stat-1 levels remained 

unchanged. Further, there was also a significant reduction in p-Erk1/2 levels (~60%) after 

anti-PD-1 treatment. p-Erk1/2 is an indicator of cell proliferation and p-Stat3-705 is 

implicated in tumor metastasis and OS cell proliferation (182, 183). This may be an effect of 

immune cells inducing cell death. Hence, our data implies that the therapeutic efficacy of 

anti-PD-1 against OS lung metastasis in vivo may be due to inhibition of tumor cell 

proliferation by blocking p-Stat3/p-Erk1/2 and PDL-1 signaling pathways. 
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A.  

 

B.  

 

Figure 29. PDL-1, p-Stat3, p-Erk1/2 were decreased in lung tumor lysates after anti-

PD-1 treatment in vivo. 

Lysates were obtained from LM7 lung tumor nodules of mice treated with PBS or anti-PD-1 

(200 μg/mouse) for 5 weeks, using RIPA buffer followed by sonication. Western blotting 

was performed to probe for p-Stat3-705, Stat3, p-Stat1, Stat-1, PDL-1, p-Erk1//2 and Erk1/2 

proteins. Actin as a loading control. 
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Summary 

Earlier, we showed that anti-PD-1 treatment resulted in increased infiltration of 

macrophages and NK cells, possibly leading to increased apoptosis and decreased tumor cell 

proliferation. In this chapter, we investigated the signaling mechanisms affected by anti-PD-1 

antibody in vivo. We demonstrated that PDL-1 expression is downregulated on LM7 lung 

metastases as well as lung tumors after-anti-PD-1 treatment. Since PDL-1 is involved in 

immune evasion response by binding to PD-1, our data hints to the possibility that anti-PD-1 

may be resulting in immune cell activation to cause elimination of PDL-1
+ 

LM7 cells and 

decrease in PDL-1 expression on LM7 tumor cells. PDL-1 expression has been known to be 

regulated by multiple signaling pathways. Previously, a study showed that PDL-1 expression 

was significantly upregulated in B-raf inhibitor resistant melanoma cells, due to the increased 

p-Stat3 as well as p-Erk1/2 levels (184). Here, we discovered that anti-PD-1 blocks p-Stat3 

and p-Erk1/2 pathways after in vivo anti-PD-1 treatment. Thus, the decrease in PDL-1 

expression observed in vivo may be likely due to both decreased p-Stat3 and p-Erk1/2. 

It is known that p-Stat3 is involved in OS cell proliferation and its overexpression 

correlates with poor prognosis (183, 185). p-Stat3 and p-Erk1/2 are the markers of poor 

chemotherapeutic responses in OS patients (182). In addition, p-Stat3 is involved in a 

number of cellular responses including cell survival, apoptosis, migration, immune cell 

evasion as well as metastasis (186). Our data demonstrated that anti-PD-1 promoted tumor 

cell apoptosis in vivo. Thus, the enhancement of LM7 tumor cell apoptosis and inhibition of 

lung metastasis due to anti-PD-1 could be attributed to inhibition of p-Stat3-705 signaling. In 

addition, the reduced p-Erk1/2 expression corroborates our data of decreased Ki-67 staining 



www.manaraa.com

116 

observed in anti-PD-1 treated LM7 lung metastases, indicating decreased tumor cell 

proliferation. 

Our data showed that anti-PD-1 exerted an effect on OS tumor cell signaling in vivo. 

Here, we uncover the novel finding that anti-PD-1 inhibited the p-Stat3/p-Erk1/2 signaling in 

LM7 OS tumor cells. 
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CHAPTER 12  

Discussion 
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Figure 30. Proposed model of mechanisms leading to regression of OS lung metastasis 

after PD-1 blockade 

A. PDL-1 is upregulated in OS cells. Anti-PD-1 treatment blocks interaction of tumor PDL-1 

with PD-1 on NK cells and macrophages in LM7 OS lung tumors; B. Anti-PD-1 treatment 

leads to increased migration of NK cells and macrophages in OS lung tumors. The resulting 

effect is inhibition of tumor cell proliferation and enhanced tumor apoptosis. Macrophages, 

but not NK cells are implicated in the anti-metastatic effect of anti-PD-1 in OS; C. Anti-PD-1 

also led to blockade of the p-Stat3/p-Erk1/2 and PDL-1 pathway, which is involved in 

proliferation and apoptosis. Anti-PD-1 treatment ultimately leads to regression of OS lung 

metastasis. 

 

OS presents in about 20% of new patients with aggressive lung metastasis. These 

patients have a 5-year survival of only 25-30%. (2, 4). The major organ of metastatic spread 

is the lung and the survival of patients with relapsed OS is also significantly low, as less than 

20% of the patients survive (187). Due to the limited therapeutic options, novel targeting 

therapies need to be investigated for the treatment of OS lung metastasis. Immunotherapeutic 

approaches have recently shown promise in the treatment of a wide variety of cancers. L-

MTP-PE, an activator of macrophages and monocytes, has been the only novel agent that has 
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demonstrated clinical efficacy in the past two decades. L-MTP-PE resulted in 8% 

improvement in overall survival of OS patients when combined with standard chemotherapy 

(12-14).  

Previous data from our lab showed that aerosol IL-2 in combination with NK cell 

therapy showed a higher efficacy against OS lung metastasis than either therapy alone. (34). 

However, complete elimination was not observed and metastasis disease relapse was seen as 

mice continued to die after combination therapy (35). Hence, we hypothesize that resistance 

to the therapy may be due to the immunosuppressive responses in the OS lung 

microenvironment. OS is a cancer characterized by high genomic instability, with several 

known high-frequency mutations like Tp53, Rb1, as well as ATRX , DLG2, PTEN and 

mTOR (188). In addition, it was recently discovered that OS tumors exhibit multiple re-

arrangements, kataegis (hypermutations associated with structural variations) and 

Chromothripsis (chromosomal shattering) in certain cases (188-190). Owing to this, OS can 

be classified as an immunogenic tumor type. Overexpression of PDL-1 on the tumors has 

been known as one of the mechanisms resulting in immune escape by binding to the 

immune-inhibitory receptor, PD-1 present on immune cells. 

Our study revealed that PDL-1 is expressed in OS cell lines and OS lung metastases 

from patient samples, validating its importance in OS. The findings presented in this study 

showed that blocking PD-1-PDL-1 interactions using PD-1 checkpoint inhibitor resulted in 

inhibition of OS lung metastasis. Although PD-1 blockade has shown efficacy in various 

tumor types, our study is the first to demonstrate the efficacy of anti-PD-1 against OS lung 

metastasis. Most of the previous studies have focused on the role of T-cell immune activation 

after blockade of PD-1 pathway showing T-cells to be important in anti-tumor responses. Our 
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findings demonstrate for the first time that anti-PD-1 led to increased macrophage infiltration 

as well as activation of anti-tumor M1 macrophage sub-types. Our data showing PD-1 

expression on macrophages and NK cells in OS lung tumors is novel and underlines the role 

of PD-1 as a therapeutic target in OS lung metastasis. In our model, the PD-1 regulatory 

signal is shut-off on the immune cells at the tumor site, thus potentially triggering a cytokine 

cascade within the tumor-immune cell microenvironment. The resident NK cells immune 

cells may secrete immune-activating cytokines like IL-2, IFN-γ, and macrophage 

inflammatory protein (MIP)-1α, resulting in macrophage activation (168). This may lead to 

release of cytokines from activated macrophages like TNF-α and IL-6 (8). Activated NK 

cells may lead to increase in the number of M1 macrophages, and spare the M2 macrophages 

(177). On the contrary, immunosuppressive cytokines secreted by the OS tumor cells such as 

TGF-β and IL-10 may be decreased, thus shifting the balance towards an activated immune 

response. This may attract more infiltrative NK and macrophages at the localized tumor site, 

thus increasing their migration and proliferation, and enhanced anti-tumor function.  

In addition, we demonstrate that PD-1 is also expressed in OS cell lines, which is an 

innovative finding implying that PD-1 can be considered as a potential target not only with 

respect to immune cells but also tumor cells by themselves. We also found a unique 

mechanism that anti-PD-1 directly affected the p-Stat3/p-Erk1/2 signaling pathway on OS 

tumor cells, resulting in increased apoptosis and decreased cell proliferation. Overall, our 

results indicate that PD-1/PDL-1 signaling axis is a promising potential therapeutic target for 

OS lung metastasis. 
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PDL-1 expression in OS 

A large body of evidence shows that PDL-1 is overexpressed in a number of different 

cancers like melanomas, renal, pancreatic and non-small cell lung cancer (72-76). PDL-1 

upregulation has been described at the transcript level in OS and PDL-1 expression has been 

described in OS metastasis using immunofluorescence (103, 111). Here, we investigated the 

expression of PDL-1 at the protein level in OS cell lines and OS lung metastases from 

patients using DAB staining method for paraffin-embedded tissues and a specific anti-human 

PDL-1 antibody. 

Our in vitro findings revealed that > 90% PDL-1 positivity was seen in 3 out of 8 cell 

lines, > 50% PDL-1 positivity was seen in 2 out of 8 cell lines and 3 out of 8 cell lines 

showed < 25% positivity. Thus, PDL-1 expression was variable in our OS cell line panel. 

Further, our data for total PDL-1 protein levels goes along with the flow cytometry data, 

indicating that equivalent levels of intracellular PDL-1 are cycled back to the cell surface in 

different OS cell lines. Thus, the variability in PDL-1 expression is not due to differences in 

protein localization at the membrane versus cytoplasm in OS cell lines. A recent study also 

showed variable PDL-1 expression in a large set of melanoma cell lines, but did not find any 

association of PDL-1 expression with the oncogene-driver mutations (117). 

The variability in PDL-1 expression in between the various cell lines could be 

possibly due to complex genomic variations in the OS cell lines. Recent evidence using 

whole-genome sequencing showed that 56% OS patients had mutations in Rb and Tp53 

pathway and 24% possessed alterations in PI3-K/mTOR pathway, including PTEN mutations 

(191). Since PDL-1 expression has been known to be upregulated by PI3-K-Akt-mTOR 

pathway alterations as well as PTEN deletions in non-small cell lung cancer and 



www.manaraa.com

122 

glioblastoma, it is a possibility that differences in PDL-1 expression could be co-related with 

mutations in these pathways (67, 192, 193).  

Since PDL-1 expression was variable in OS cell lines, it would be interesting to 

compare the in vivo therapeutic responses of anti-PD-1 in LM7 model (intermediate-high 

PDL-1 expression) using another cell line model such as C-CH-OSD, which showed low 

PDL-1 expression. However, as shown in earlier studies, there is a possibility that there may 

be no correlation as the efficacy of anti-PD-1 antibodies was found to be independent of 

PDL-1 expression (86, 87). In addition, in vivo PDL-1 expression levels could be modulated 

by the tumor microenvironment. We also showed for the first time that PDL-1 was 

overexpressed in lung metastases from OS patients with IHC staining using paraffin-

embedded tissues. PDL-1 positivity was observed in (~80 %) in 8 out of 10 patients. Our data 

are almost similar to those from another group where they demonstrated PDL-1 expression in 

in 75% of OS metastatic patients using immunofluorescence assays (103). The staining with 

the PDL-1 antibody we used was superior to this study as we could detect PDL-1 in OS 

primary tumors as well. PDL-1 expression levels and pattern was variable amongst the 

different OS patient tissues and an average of ~30 % PDL-1 positivity was observed. Since 

OS tumors are highly heterogeneous and have numerous sub-types, it can be anticipated that 

PDL-1 expression levels are variable. Our data of variable PDL-1 expression go along with 

those from several studies in other cancers like squamous cell carcinoma (5-60%), non-small 

cell lung cancer (35- 95%) and melanoma (40-100%), where similar ranges were observed in 

paraffin tissue samples (71, 74, 194-197). Our results are also similar to those discovered 

recently in primary OS tumor samples, where a variable range of PDL-1 expression was 
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observed, with majority of tumors showing <25% staining (112). Here, they analyzed only 

primary tumors and not metastases. 

Future studies entailing staining for a larger set of OS lung metastases will enable the 

co-relation of PDL-1 expression with OS sub-types and patient parameters like stage, overall 

survival and metastasis-free survival. Since we also observed PDL-1 expression in OS 

primary bone samples, it would be interesting to look at PDL-1 expression from matched 

patient samples from primary and lung metastases to examine the differences in PDL-1 

expression. Currently, patients with as low as >1% PDL-1 positivity have shown better 

clinical responses towards anti-PD-1 antibodies in non-small cell lung cancer (126). Thus, 

our data of PDL-1 expression in OS is of translational significance as it will provide the basis 

for the design of clinical trials to pre-select the potential patients that may respond to PD-

1/PDL-1 targeting agents. 

Therapeutic efficacy of anti-PD-1 against OS lung metastases 

Recent investigations show that PD-1/PDL-1 checkpoint inhibitors induce tumor 

regression in pre-clinical models such as melanoma, colon cancer and pancreatic cancer 

when used alone or augment the effect of other immunotherapies such as adoptive T-cell 

therapy or CTLA-4 antibodies when used in combination (60, 76, 127-130). Most of these 

studies evaluating PD-1 targeting agents have focused on the activation of T-cell function 

and infiltration as a mechanism resulting in anti-tumor responses. Here, we discovered that 

anti-PD-1 caused regression of OS lung metastases, tumor cell apoptosis and decreased 

tumor cell proliferation, using a human OS xenograft nude mouse model (Figure 7, 8 and 9). 

We observed that the number of LM7 OS lung macro-metastases (visual) and micro-

metastases (microscopic) was significant decreased in the anti-PD-1 treatment mice group as 
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compared to the PBS treated controls (p< 0.05) (Figure 7). The dose of anti-PD-1 which was 

administered was comparable to that used for tumor models in other studies (60, 108, 109). 

Another crucial finding from our studies was that the in vivo dose of anti-PD-1 administered 

did not cause any significant toxicity in nude mice. (Figure 11, 12, 13). 

Due to the significant homology between mPD-1 and hPD-1 receptor (66%) as well 

as mPDL-1 and hPDL-1 (77%), the binding affinities of mPD-1 to mPDL-1 and mPD-1 to 

hPDL-1 are equivalent (52, 131, 132). Hence, in our model, anti-murine PD-1 antibody likely 

exerts therapeutic efficacy due to blockade of binding of mPD-1 on endogenous mouse NK 

cells and macrophages with hPDL-1 on LM7 tumor cells. In addition, anti-murine PD-1 

antibody may also bind to hPD-1 on LM7 cells and exert a direct effect by preventing the 

binding to hPDL-1 on the tumor cells. Our data are in congruence with a recent study, which 

showed that PDL-1 blockade resulted in fewer metastases in a metastatic osteosarcoma 

mouse model, thus reiterating the importance of PD-1/PDL-1 signaling in OS (103). 

In addition, we demonstrate that anti-PD-1 led to enhanced apoptosis, decreased 

tumor cell proliferation and decrease in PDL-1 expression on tumors. Consistent with our 

data, studies by Akbay E. A. et al. and Chen Y. et al. have also previously reported that anti-

PD-1 decreased lung tumor growth through increased apoptosis (198, 199). Here, in addition 

to induction of apoptosis, we also show an inhibitory effect on tumor cell proliferation. It has 

also been shown that PDL-1 correlates with proliferative potential or Ki-67 expression of 

tumor cells (124). Thus, the decrease in tumor PDL-1 expression along with Ki-67 staining is 

likely due to an increase in death of tumor cells expressing PDL-1 after anti-PD-1 treatment. 

We also elucidated that inhibition of tumor cell proliferation and apoptosis induction were 

mechanisms involved in the therapeutic efficacy of anti-PD-1. Here, we used a PD-1 
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blocking antibody for our study. However, anti-PD-1 antibodies like Nivolumab and 

Pembrolizumab are currently showing promising results clinically in other cancers (101, 

102). Our findings are clinically relevant and they indicate that anti-PD-1 antibodies may 

show promise in the treatment of patients with OS lung metastases. 

Anti-PD-1 enhances NK and macrophage infiltration in OS lung tumors 

Most of the studies evaluating PD-1 blocking agents have focused on the role of T 

cells in the anti-tumor efficacy of anti-PD-1. PD-1 has been known to be upregulated on T 

cells in the tumors, which is responsible for T-cell dysfunction and immunosuppression (60, 

103, 151). PD-1 upregulation on NK cells and macrophages has been shown in certain 

inflammatory conditions like viral infection and sepsis (152, 153, 156). 

Our data provide the first evidence that PD-1 is expressed on macrophages and NK 

cells in the metastatic tumors. We found that PD-1 is upregulated on NK and macrophages in 

OS lung tumor metastatic sites as opposed to those in the spleen (Figure 14). This implies 

that the function of NK cells and macrophages is suppressed in the OS lung metastasis tumor 

microenvironment. Since we have demonstrated that PDL-1 is overexpressed on OS tumor 

cells, PD-1 on NK cells and macrophages may be binding to the PDL-1 on the tumor cells 

resulting in suppression of anti-immune response in this model. We further show that PD-1 

blockade caused an increase in both NK and macrophage infiltration in the OS lung tumors 

in contrast with peripheral immune organ like spleen (Figure 16 and 17). Our data are novel 

as we are the first to uncover that anti-PD-1 can lead to an increase in the number of NK cells 

and macrophages in the OS lung tumors, which ultimately result in apoptosis and reduced 

number of OS metastases. It has been found that extrathymic T cell-subset population 

increases in nude mice after 3-4 months of age (200). However, since we used young (4-
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week old) nude mice in our study, the contribution of T cells in anti-PD-1 responses can be 

regarded as insignificant. In addition, we also demonstrated that anti-PD-1 induces the 

polarization of pro-tumorigenic M2 to anti-tumor M1 macrophages. Previously, Pahl, J. H. et 

al. has illustrated the role of anti-tumorigenic effect of M1 macrophages towards 

osteosarcoma cells after the treatment of M1 macrophages with L-MTP-PE and IFN-γ (167). 

The potential cytokines that may lead to increase in the ratio of M1 to M2 include increased 

levels of IFN-γ, TNF-α, MIP-1α and GM-CSF (increase in M1 macrophages) and decrease in 

the levels of CSF-1, IL-4, IL-13, IL-10 and TGF-β (decrease of M2 macrophages) (201).  

Similar to TAMs, anti-tumor N1 neutrophil sub-types and pro-tumorigenic N2 sub-

types have been described (202). PD-1 expression on neutrophils as well neutrophil sub-

types has not yet been investigated in tumor types. Since we are using the nude mouse model, 

it will be interesting to assess PD-1 expression on neutrophils in OS lung tumors and the role 

of neutrophils in anti-PD-1 responses. PDL-1 is expressed on neutrophils in conditions like 

hepatocellular carcinoma and sepsis, which causing T-cell suppression and PD-1 targeting 

agents have been shown to enhance the anti-tumor neutrophil function (203, 204). PDL-1 

expression on neutrophils in OS lung metastases and the effect of anti-PD-1 antibody maybe 

evaluated in the future.  

Recently, another group showed that PDL-1 blockade can lead to restoration of T cell 

function in a metastatic OS mouse model. However, the mice died due to incomplete T-cell 

response because of other inhibitory checkpoints like CTLA-4 (103). Our data is unique as 

this would entail targeting the PD-1 receptor expressed on immune cells, thus inducing the 

immune responses from both innate and adaptive immune system, which may result in better 

responses as opposed to targeting PDL-1 on the tumors. However, in this regard, it will be 
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crucial to study the effect of anti-PD-1 in an immunocompetent mouse model to understand 

the role of NK and macrophages in the presence of T cells. 

Although anti-PD-1 increased the number of NK cells and macrophages at the OS 

lung tumor sites, we determined that mouse NK cells did not play a major role in the 

therapeutic efficacy of anti-PD-1. Depletion of NK cells using anti-asialo-GM1 in presence 

of anti-PD-1 showed similar efficacy as anti-PD-1 by itself (Figure 22). Thus, additional 

mechanisms such as activation of macrophages maybe involved in the rejection of metastases 

on anti-PD-1 treatment. Studies using immunotherapeutic agents like L-MTP-PE and IL-

2/IL-15 have revealed that macrophages can be directly activated independent of NK cells, 

resulting in phagocytosis of cancer cells (167, 176). Thus, NK cells do not independently 

have anti-tumor functions and are not involved in the therapeutic response of anti-PD-1 

towards OS lung metastasis. 

Macrophages may play anti-tumor functions through a variety of downstream effector 

mechanisms. A previous study by Buddingh et al., 2011 revealed that TAMs play an anti-

metastatic role in OS, as higher numbers of infiltrating TAMs in pretreatment biopsies of OS 

patients correlated with better patient survival (24). It has also been shown that L-MTP-PE 

treatment resulted in activation of M1 macrophages, which released soluble factors such as 

tumor necrosis factor (TNF-α), IL-6 and IL-1β, resulting in anti-tumor effects against OS 

cells (167). Certain chemokines such as Macrophage-inflammatory protein-1α (MIP-1α), 

Monocyte chemoattractant protein-1 (MCP-1) may also be released by macrophages as 

observed in IL-12/IL-15 gene transfer study (176). Activated macrophages may result in 

killing of cancer cells ultimately through phagocytosis. Phagocytosis-mediated killing by 

macrophages may be due to the toxic reactive oxygen species or the induction of enzyme 
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inducible NO synthase (iNOS), which results in NO (Nitric Oxide) production (163). 

Macrophages exert their cytotoxic functions against tumor cells through the effector 

molecule, NO (205). Increased iNOS and NO has been associated with decreased tumor 

growth and metastasis in mouse tumor models (176, 206). 

PD-1 expression in OS 

PD-1 has been primarily studied as an inhibitory receptor expressed on immune cells 

like T cells, B cells, natural killer cells, monocytes on activation (44). As we were exploring 

the therapeutic effect of a PD-1 blocking antibody in this study, we also investigated whether 

PD-1 is expressed on OS cell lines. Interestingly, we discovered that PD-1 is expressed on all 

OS cell lines and that variable levels of PD-1 expression were observed (Figure 26). We also 

found expression of PD-1 in a sub-population of LM7 tumor cells in vivo (Figure 27). In 

support of our results, recent evidence shows that PD-1 is expressed by melanoma cell lines 

(181). Our data implies that besides the PDL-1 expression on OS cells, PD-1 expression by 

itself on OS cells can also be a potential druggable target. 

Our findings of PD-1 expression led us to investigate if PD-1 has any role in 

proliferation and viability of LM7 OS cells. Treatment of anti-PD-1 resulted in a significant 

decrease in cell viability after 48 and 72 hours (Appendix Fig A1). Our data indicated that in 

addition to its effect on immune responses, the therapeutic activity of anti-PD-1 maybe 

mediated by directly binding to PD-1 on LM7 cells, thus preventing the ligation with PDL-1 

on OS tumor cells themselves. Considering that PD-1 is expressed in in vivo tumors, the 

therapeutic effect of anti-PD-1 in our in vivo model could be due to the dual effects of 

immune cell (macrophage) infiltration as well as the direct cytotoxic effect on the LM7 
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tumor cells. Here, anti-PD-1 may prevent the ligation of tumor PD-1 with PDL-1 on tumor 

cells as well PDL-1 on host immune cells, which remains to be distinguished. 

Our results are novel and provide a new mechanism of PD-1 targeting agents in OS. 

Considering PD-1 expression in OS cell lines, the assessment of PD-1 expression on tumor 

cells in OS patient lung metastases is also warranted. PD-1 expression on tumors, in addition 

to PDL-1 expression may provide relevant information for selection of patients who may 

respond to PD-1 targeted therapies. 

Anti-PD-1 blocks p-Stat3/p-Erk/PDL-1 pathway in OS 

Based on PD-1 expression in LM7 cells and tumors, we explored the effects of anti-

PD-1 on downstream signaling pathways in LM7 cells in vitro and LM7 tumors in vivo. We 

found that anti-PD-1 treatment downregulated p-Stat3-705, p-Erk1/2 and PDL-1 protein 

levels in the in vivo LM7 tumors (Figure 29). In addition, to complement our in vivo data, we 

also found that anti-PD-1 led to decreased expression of p-Stat3-705 and p-Erk1/2 following 

in vitro anti-PD-1 treatment (Appendix Figure A2). As PDL-1 has shown to be regulated by 

p-Stat3 and p-Erk1/2, which are upstream of PDL-1 in B-raf inhibitor resistant melanoma 

cells, the decrease in in vivo PDL-1 expression may be due to blockade of both p-Stat3 and p-

Erk1/2 (184). However, contrary to the in vivo setting, PDL-1 levels increased following in 

vitro treatment with anti-PD-1, which may be due to the lack of immune cell interactions or 

alternative feedback mechanisms controlling PDL-1 expression. p-Stat3 has been shown to 

be involved in OS cell proliferation and other functions like prevention of apoptosis, 

migration, immune cell evasion and metastasis (183, 185, 186, 207). Also, p-Stat3 

overexpression has been reported to be co-related with poor prognosis and p-Stat3 and p-

Erk1/2 have been associated with poor chemotherapeutic responses in OS patients (182, 
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183). Hence, our data implies that the therapeutic efficacy of anti-PD-1 against OS lung 

metastasis as well as increased tumor cell apoptosis could be attributed to the inhibition of p-

Stat3-705 signaling. 

We interpret our data to mean that anti-PD-1 caused inhibition of downstream p-Stat3 

and p-Erk1/2 signaling pathways on LM7 cells. A recent study by Kleffel S et al. reported 

that PD-1 is expressed on melanoma cells and that PD-1 blockade led to reduced tumor 

growth by targeting mTOR pathway in melanoma cells in addition to its effect on activating 

immune cell responses (181). Our findings provide a new mechanism of PD-1 targeting 

agents with respect to the blockade of p-Stat3/p-Erk1/2 signaling in OS both in vitro an in 

vivo and the resulting inhibitory effect on proliferation and induction of apoptosis. 
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CHAPTER 13   

Future Directions 
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Mechanism/s of PDL-1 regulation in OS 

PDL-1 has been known to be regulated by both intrinsic and adaptive mechanisms 

(66) Our results indicate that PDL-1 is variably expressed in OS cell lines and OS metastatic 

lung patient samples. This implies that PDL-1 is constitutively expressed, due to intrinsic 

mutations, in addition to the adaptive mechanisms existing in the patient tumor 

microenvironment. It was previously demonstrated that PDL-1 expression has been 

associated with PTEN deletion and activated PI3-K/Akt pathway in glioblastoma (67, 192, 

193). To study the mechanism of regulation of PDL-1 in OS, further experimentation is 

necessary. Since OS is a cancer with high mutational load, the correlation of PDL-1 with 

frequently occurring mutations such as mutations in p53, Rb, PTEN, PI3-K/Akt, mTOR 

pathway can be assessed. In cell lines, mutational analysis could be performed by Sanger 

sequencing for OS cell line panel and then PDL-1 expression may be compared in different 

cell lines to evaluate if any co-relation exists with any of the mutations. Also, RNA 

expression from OS TCGA (The Cancer Genome Atlas) database can be obtained to assess 

the correlation of these genes or other pathway aberrations to PDL-1 positivity in tumors. In 

our study, LM7 cells are p53 null, but showed PDL-1 positivity. Hence, as shown in Table 4, 

PDL-1 expression in the available OS cell line panel did not correlate with p53 status in OS 

cell lines. 

PDL-1 expression has been shown to be upregulated by cytokines like IFN-γ, which 

then suppresses the activation of T cells (70, 71). In order to assess such adaptive 

mechanisms that may regulate PDL-1 overexpression in patient samples, IHC staining may 

be performed for PDL-1 tumor expression and macrophage (CD68) or NK cell (CD56) 

infiltration markers in a large OS lung metastases patient TMA followed by statistical co-
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relation analysis. This will provide an insight if PDL-1 expression on tumors can be 

correlated with increased immune cell infiltration in patients with OS lung metastases. 

Our data showed that PD-1 blockade resulted in downregulation of p-Stat3 and PDL-

1 expression in our in vivo OS model. To assess the translational significance of these 

findings, staining of p-Stat3-705 may be performed in OS lung metastases, from pre-

treatment and post-treatment biopsies of patients receiving anti-PD-1. Correlation studies 

maybe performed for p-Stat3 expression and clinical outcomes in response to anti-PD-1 

treatment in metastatic OS patients. This can futuristically help to select patients with that 

may be likely to respond to the treatment with PD-1/PDL-1 blockade, which is an 

unanswered question till date.  

 

Table 4. p53 status in OS cell lines 
 

Cell Line p53 status 

 

PDL-1 Status 

KRIB Kras mutant, p53 wild-type High 

143 B p53 wild-type High 

U2OS p53 wild-type High 

LM7 p53 null Intermediate 

SAOS-2 p53 null Intermediate 

C-CH-OSD p53 Mutant Low 

C-CH-OSO p53 Mutant Low 

MG63 p53 wild-type Low 
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Therapeutic Efficacy of PD-1 blockade in immunocompetent, immunocompromised 

and PD-1 knockout mouse models 

Our work demonstrated that anti-PD-1 caused regression of OS lung metastases in 

mice in a human OS xenograft nude mouse model. We also observed that there was increased 

infiltration of mouse NK cells and macrophages in OS lung tumors, although the efficacy 

could not be attributed to the NK cells by themselves. However, the limitations of this model 

are that we cannot study the contribution of macrophages and NK cells to the therapeutic 

efficacy in presence of T cells. Recently, a study investigated the effects of blocking PDL-1 

using a mouse OS metastatic model, and showed decreased tumor burden due to increased 

infiltration and activation of CTLs (103). However, no investigations were performed to see 

whether NK cells and/or macrophages also contributed to the therapy responses. Thus, it will 

be interesting to study the effect of anti-PD-1 antibody using a BALB/c OS lung metastasis 

mouse model. For this purpose, a mouse metastatic osteosarcoma cell line K7M3 would be 

injected to establish micro-metastases (5-10 days), followed by treatment with anti-PD-1 

(intraperitoneally 200 μg per mouse) or PBS for 5 weeks. After sacrificing the mice and 

extracting the lungs, the number of lung metastases formed will be counted, in addition to 

tumor cell apoptosis, to ascertain the therapeutic efficacy in this model. Also, T cell, 

macrophage and NK infiltration will be assessed to compare the individual contribution of 

immune cells. 

Our results demonstrated a unique finding of PD-1 expression on the LM7 cells. 

Thus, in order to assess the contribution of therapeutic efficacy of anti-PD-1 by PD-1 

blockade of tumor cells, independent of that attributed due to PD-1 blockade of macrophages 

or NK cells, immunocompromised NSG mice could be used. NSG mice are NK cell, T cell 
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deficient and also have inactivated macrophages. Similar schema for LM7 injection and anti-

PD-1 treatment will be followed. Thus, if PD-1 on OS cells is involved in proliferation and 

metastasis, anti-PD-1 treatment would show a significant therapeutic effect in NSG mice, 

independent of effects of immune system activation. Similarly, to eliminate the contribution 

of host PD-1, PD-1 (-/-) mice which have been crossed with BALB/c background could be 

utilized (208). Efficacy of anti-PD-1 in PD-1 (-/-) mice compared to PD-1 wild-type animals 

will provide information of the effective contribution of PD-1 expression on LM7 OS tumor 

cells. 

To prove that PD-1 by itself induces metastasis, stable PD-1 overexpression may be 

conducted in LM7 cells using lentiviral vector constructs followed by administration in NSG 

mice to examine if there is accelerated metastasis due to PD-1 on OS tumor cells. Further, 

treatment with anti-PD-1 may be performed to assess if there is reduced metastasis formation 

in PD-1-overexpressing LM7 group versus vector control group in NSG mice. 
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PD-1 in peripheral blood of OS patients 

In our study, we found that PD-1 is expressed on NK cells and macrophages in the 

OS lung tumors in mice. These findings support our hypothesis that PD-1 on the immune 

cells of innate system plays an important role in immunosuppression in OS lung metastasis. 

Recently, it was shown that there were more PD-1
+
 immune cells in PDL-1 positive OS 

primary tumors than those without PDL-1 expression (112). Thus, in order to provide the 

translational context of our findings, PD-1 expression on NK cells and macrophages in OS 

lung metastases from patients may be explored. For this purpose, double 

immunofluorescence staining for PD-1 and CD56 as well as PD-1 and CD68 may be 

performed using paraffin-embedded OS lung metastases samples. 

Our results also lead us to explore PD-1 expression on NK cells and macrophages in 

the peripheral blood from OS lung metastases patients. A study by Zheng W et al. showed 

that PD-1 is important in progression of OS and that higher PD-1 levels on CD4
+
 T cells in 

blood were found with patients with OS metastasis (209). Earlier studies in renal cancer as 

well as multiple myeloma have also found peripheral PD-1 expression to be elevated in 

immune cells like monocytes, NK cells as well as T cells and that the PD-1 expression co-

related with the stage of the disease (154, 210). Hence, in order to assess PD-1 expression in 

immune-cell subsets, blood samples will be obtained from multiple healthy donors as well as 

from OS patients with lung metastases and primary tumors. Purified peripheral blood 

mononuclear cells (PBMCs) will be isolated by Ficoll-plaque separation followed by staining 

with NK cell marker (CD56) and macrophage marker (CD68) and M1 (CD86) or M2 

(CD163) markers. Statistical analysis will be performed to assess the co-relation of PD-1 

expression with the stage of disease. 
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Role of PD-1 expression in OS cells 

Our data of PD-1 expression in OS cell lines, and the effects on p-Stat3/p-Erk1/2 

downstream signaling implicate a potential tumorigenic role of PD-1 in OS cells. Since we 

used anti-murine blocking PD-1 antibody, we may use anti-human PD-1 blocking antibody 

to evaluate cytotoxicity. These findings can be confirmed using genetic knockdown by PD-1 

shRNA’s to observe the effects on cytotoxicity, apoptosis and downstream signaling. Stable 

shRNA knockdown LM7 cells will be generated using lentivirus and maintained in 

appropriate antibiotic. MTT assays for cytotoxicity and Annexin-V staining assays for 

apoptosis will be performed. Also, in the context of PD-1 downstream signaling, it will be 

crucial to further address the mechanism by which PD-1 blockade inhibits the p-Stat3 and p-

Erk1/2 downstream signaling pathways. Since, PD-1 is a transmembrane receptor and 

functions through phosphorylation of ITIM and ITSM motifs present within the cytoplasmic 

domain, site directed mutagenesis could be used to create constructs with inactivating point 

mutations in tyrosine sites (Y225F/Y248F) followed by transduction in OS cells. Thus, we 

could assess the p-Stat3 and p-Erk1/2 protein levels, proliferation and cell growth in 

Y225F/Y248F mutant LM7 cells as compared to vector controls to see if intrinsic signaling 

and function of PD-1 receptor is abrogated. 

Effect of PD-1 blockade on primary OS tumors 

Our studies reflected the efficacy of anti-PD-1 against the formation of OS lung 

metastasis. However, since we observed PDL-1 expression in primary tumors from patients, 

it is also possible that PDL-1/PD-1 interaction may play a role in the growth of primary OS 

bone tumors. Since the OS bone tumor physiology may differ from lung tumor 
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microenvironment, it will be crucial to study the role of macrophages in the context of 

regression of primary tumors as well as assess the time required for development of lung 

metastases. For this purpose, intra-osseous injection of K7M3 cells in proximal tibia may be 

performed in BALB/c mice to form primary tumors (211). After the confirmation of primary 

tumor mass by palpation, treatment will be performed using anti-PD-1 for 5 weeks. If the 

tumors outgrow, the legs will be amputated and treatment will be continued to evaluate the 

effect on pulmonary metastases. The end-points to be assessed will include the size of 

primary tumors, time required for formation of metastases and infiltration of macrophages, 

NK and T cells in the tumors. 

Combination with other therapies 

Combination of anti-PD-1 and L-MTP-PE 

Our data showed dramatic effects of anti-PD-1 by itself on the number of OS lung 

metastases. However, the impact on survival of the mice remains to be answered. Anti-PD-1 

treatment alone may increase survival in mice, but it is also a possibility that resistance may 

develop to single agent alone. Currently, a number of clinical trials and preclinical studies of 

anti-PD-1 antibodies are being conducted alone or in conjunction with other therapies (Table 

1 and 2). Although the anti-PD-1 antibody we used is a blocking antibody and not of clinical 

grade, novel combination treatment strategies may be utilized based on our results to provide 

pre-clinical information for design of future clinical trials. 

In our study, we discovered a novel finding that one of the mechanisms of therapeutic 

efficacy of anti-PD-1 against OS lung metastasis is through increased macrophage 

infiltration. In contrast to other cancer types, TAMS have shown to play an anti-metastatic 
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role in OS. It was shown that the macrophage infiltration in pretreatment biopsies of OS 

patients correlated with better patient survival (24). Our lab has previously discovered the 

efficacy of L-MTP-PE, a macrophage and monocyte activating agent, in human and canine 

OS (8-10). L-MTP-PE in combination with standard adjuvant chemotherapy led to 8 % 

improvement in the overall survival of patients. Currently, this agent has been approved by 

European Medical Agency and in other countries for the treatment of surgically resectable 

non-metastatic OS in combination with chemotherapy as (12-14). Thus, it will be interesting 

to study the synergy between anti-PD-1 and L-MTP-PE in our in vivo OS mouse model. 

Treatments will be done with single agents alone and combination of both after the 

establishment of micrometastases. Therapeutic efficacy may be measured using number of 

tumor nodules formed, lung weights as well TUNEL assay for apoptosis. Also, the 

infiltration of M1 macrophages versus M2 macrophages may be studied using IHC staining 

to assess macrophage polarization. 

Combination of anti-PD-1 and IL-2 muteins 

Other immune activating agents such as IL-2 are known to induce NK and T-cell 

activation. (26, 27) Our laboratory has shown the efficacy of single agent aerosol IL-2 in a 

human OS pulmonary metastasis model. Aerosol IL-2 increased the number of NK cells in 

the lung tumors (34). However, relapse is seen when single agent treatment is given as mice 

succumb to the disease. It will be interesting to utilize either Aerosol IL-2 or IL-2 muteins 

such as the no- mutein in combination with anti-PD-1 to assess if synergy may exist. These 

are IL-2 variants created to preferentially bind to the IL-2 receptor chains responsible for 

cytotoxic T-cells proliferation. No- mutein has reduced affinity to CD25, the IL-2 receptor 

responsible for Treg proliferation, and maintain normal binding with IL-2R. No- mutein 
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has been shown to inhibit the metastasis of B16 melanoma-variant and 3LL-D122 Lewis 

lung carcinoma in mice (212). Combination treatment of no- mutein with anti-PD-1 may be 

done using either human (LM7) or mouse (K7M3) OS model. The end-point will be to assess 

the effect on number of metastatic nodules, infiltration of immune cell subsets and tumor cell 

apoptosis. 

Combination of anti-PD-1 and anti-GD2 antibodies  

Targeted antibodies specific to antigens overexpressed in OS maybe combined with 

anti-PD-1 antibodies. GD2 is a glycosphingolipid derivative, involved in attachment of tumor 

cells to extracellular matrix. GD2 is known to be overexpressed in OS patients at the cell 

surface (213, 214). Anti-GD2 antibodies such as ch14.18 have shown responses in the past in 

OS patients, primarily due through augmentation of immune responses against the antibody 

bound tumor cells though antibody-dependent cellular cytotoxicity (ADCC) (215, 216). 

Currently, clinical trials of humanized anti-GD2 antibodies such as 3F8 (Hu3F8) are being 

tested for recurrent OS (NCT02502786). Macrophages are one of the effector cells that can 

mediate ADCC function to eliminate the tumor cells after monoclonal antibody treatment 

(217). Hence, anti-PD-1 agents can be used as a potential strategy to enhance macrophage 

activation and subsequent ADCC when combined with anti-GD2 antibodies for the treatment 

of OS.  

Anti-PD-1 treatment in transplant patients 

In certain tumors such as advanced neuroblastoma, hematopoietic stem cell 

transplantation (HSCT) is performed following high-dose chemotherapy. However, most 

patients show relapse seen as minimal residual disease and resulting in poor clinical 
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outcomes. After HSCT, immune deficiency is observed in tumors due to defective T-cell 

signaling, impaired lymphocyte function and reduced effector cell numbers (218, 219). As 

our data elucidated the activation of macrophages using PD-1 blockade, PD-1 checkpoint 

inhibitors may have potential application in post-transplant patients undergoing 

chemotherapy, to boost anti-tumor responses 

Thus, novel combination strategies with PD-1 checkpoint inhibitors can be utilized 

and may show promise for the effective treatment of OS lung metastases in the future.  
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APPENDIX A 
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Anti-PD-1 treatment in vitro induces cytotoxicity in LM7 cells 

Since we observed PD-1 expression on LM7 cells, we determined the in vitro effect 

of anti-PD-1 treatment in LM7 cells. To determine the in vitro sensitivity of LM7 cells to 

anti-PD-1, LM7 cells were treated with anti-mPD-1 in increasing concentrations from 1 to 20 

μg/ml for 24, 48 and 72 hours. As shown in Figure A1 a), there were no significant changes 

in proliferation after anti-PD-1 at 24 hours at all doses from 1-20 μg/ml. However, after 48 

hours, there was a dose-dependent decrease in cell proliferation, with a significant decrease 

observed with 10 μg/ml (69.1%) and 20 μg/ml (58.5%), (p<0.05). At 72 hours, further 

decrease in cell proliferation was observed at all doses from 1 to 20 μg/ml. [1 μg/ml (48.8%), 

2 μg/ml (35.7%), 5 μg/ml (35.99%), 10 μg/ml (30.9 %), 20 μg/ml (26.4 %). A significant 

decrease in proliferation was seen at all doses at 72 hours (p<0.05). 

Figure A1 b) depicts the changes in cell viability of LM7 cells after anti-PD-1 

treatment at 24, 48 and 72 hours at three doses of 1, 10 and 20 μg/ml. At 24 hours, there were 

no significant changes in cell viability. However, at 48 hours, a significant decrease in cell 

proliferation was noted at doses of 10 μg/ml (50.6%) and 20 μg/ml (46.7%), similar to the 

MTT data. Also, at 72 hours, a significant decrease in cell proliferation was observed at 10 

μg/ml (36.5%) and 20 μg/ml (33.3%). These results implied that anti-PD-1 had a direct 

cytotoxic effect on LM7 cells. Our in vitro cytotoxicity data showed that anti-PD-1 treatment 

led to a significant reduction in cell proliferation and cell viability, most likely due to the PD-

1 expression on LM7 cells. Kleffel S et al. have shown that anti-PD-1 caused decrease in 

three-dimensional melanoma cell growth in vitro, but had no effect on cell death (181). Our 

in vitro results not only support the fact that PD-1 blockade by anti-PD-1 causes inhibition of 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Kleffel%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26359984
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OS cell proliferation, but also delineate the mechanism of an induction of apoptosis in LM7 

cells. 
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Figure A1. Anti-PD-1 antibody decreases cell viability of LM7 cells.  

a) LM7 cells were treated with anti-PD-1 (1 to 20 μg/ml) for 24, 48 and 72 hours. MTT was 

added to detect the effect on cell proliferation, b) Trypan blue assays were conducted at the 

doses 1, 10 and 20 μg/ml for 24, 48 and 72 hours. Typan blue was added and cell counts 

were computed for determining cell viability. 
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Anti-PD-1 treatment causes an increase in cleaved caspase-3 and cleaved-PARP 

expression in vitro in LM7 cells 

We demonstrated that anti-PD-1 treatment significantly decreased cell viability of 

LM7 cells in vitro. Recently, Kleffel S et al. discovered for the first time that PD-1 receptor 

is present on melanoma cells and plays a role in tumorigenesis through intrinsic downstream 

signaling. They showed that binding of the ligand PDL-1 expressed on melanoma cells or 

host cells to PD-1 on melanoma cells activates downstream mTOR (mammalian target of 

rapamycin) pathway (181). Thus, this study showed that PD-1 blocking antibody, in addition 

to augmenting the immune response against tumor cells through immune cell activation, can 

also exert a direct therapeutic effect by blocking the PD-1 downstream signaling on 

melanoma cells. In order to assess the effect on apoptosis, LM7 cells were treated with anti-

PD-1 (10 μg/ml) for 72 hours. We selected this dose as it was the lowest dose that caused a 

significant reduction in both cell proliferation and viability as seen above. This was followed 

by western blotting. As shown in Figure A2, anti-PD-1 treatment led to an increase in both 

cleaved caspase-3 and cleaved-PARP expression, which implies an induction of apoptosis. 

Hence, we conclude that anti-PD-1 not only inhibited cell proliferation, but also promoted 

cell death through apoptosis. 
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Figure A2. Anti-PD-1 treatment induced apoptosis in LM7 cells in vitro.  

LM7 cells were treated with anti-PD-1 (10 μg/ml) for 72 hours before obtaining lysates. 

Western blotting using anti-cleaved caspase-3 and anti-cleaved-PARP antibodies was 

performed to assess the effect on apoptosis using Actin as a loading control. 

 

p-Stat3-705 and pErk1/2 protein levels are significantly decreased following anti-PD-1 

treatment in LM7 cells in vitro 

Since anti-PD-1 significantly affected cell viability of LM7 cells in vitro, we assessed 

the downstream signaling pathways affected after anti-PD-1 (10 μg/ml) for 72 hours. We 

observed that there was a significant decrease in p-Stat3-705 levels as seen by western 

blotting (Figure A3). Also, p-Erk1/2 expression was significantly reduced. p-Akt levels were 

not affected in LM7 cells after anti-PD-1 treatment demonstrating that this was not the 

primary pathway that was involved in the treatment response. Contrary to our in vivo 

findings, PDL-1 was increased in LM7 cells on anti-PD-1 treatment. This may be due to the 

absence of PD-1/PDL-1 immune interactions present in vitro or alternative feedback 

mechanisms controlling PDL-1 expression apart from p-Stat3 and p-Erk1/2. Hence, our data 
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indicates that anti-PD-1 results in inhibition of p-Stat3 and p-Erk1/2 pathways, which are 

involved in tumor cell proliferation and apoptosis. 

 

 

 

Figure A3. In vitro anti-mPD-1 treatment in LM7 cells caused decreased p-Stat3, p-

Erk1/2 protein levels.  

LM7 cells were treated with anti-PD-1 (10 μg/ml) for 72 hours before obtaining lysates using 

RIPA buffer. Western blotting was performed to assess antibodies was performed to assess p-

Stat3-705, Stat3, PDL-1, p-Erk1//2, Erk1/2, p-Akt, p-70S6 Kinase protein levels. Actin was 

used as a loading control. 
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